

A 0-100 km Global Atmospheric Reanalysis of the 2014 Austral Winter in Support of DEEPWAVE Science

Steve Eckermann

Space Science Division, Naval Research Laboratory, Washington, DC, stephen.eckermann@nrl.navy.mil

Jun Ma

Computational Physics, Inc., Springfield, VA

John McCormack

Space Science Division, Naval Research Laboratory, Washington DC

Karl Hoppel, Dave Kuhl

Remote Sensing Division, Naval Research Laboratory, Washington DC

Tim Hogan, Kevin Viner, Jim Ridout, Ben Ruston, Carolyn Reynolds, Jim Doyle, Tim Whitcomb

Marine Meteorology Division, Naval Research Laboratory, Monterey CA

Department of the nvironment and Heritage astralian Antarctic Division

Acknowledgements

NRL's DEEPWAVE research and support is/was supported by:

 The Chief of Naval Research (CNR) through the NRL base 6.1 and 6.2 research program

- The Office of Naval Research (ONR) Departmental Research Initiative (DRI)"Predictability of Seasonal and Intraseasonal Oscillations."
- The National Science Foundation

- The Oceanographer of the Navy through PMW-120/SPAWAR 6.4 transition contracts
- NASA through the Heliophysics Division SR&T and GI programs.

rtment of the nent and Heritage Antarctic Division

Motivation

- DEEPWAVE acquired gravity wave observations from 0-100 km altitude, with a concentration of MLT observations from ~80-95 km (AMTM, Na lidar, NZ airglow imagers)
- Modeling of these deep wave observations requires (*inter alia*) knowledge of the background environment for wave generation and propagation from 0-100 km
 - Backgrounds for linear ray models and parameterizations
 - Lateral boundary conditions for regional models (COAMPS[®], WRF)
 - Diagnostics of wave propagation (critical levels, ducting, etc.)
- Such fields are provided by atmospheric reanalyses
- Existing centers (ECMWF, NASA GMAO, NOAA, FNMOC, Met Office, NIWA) issue reanalyses up to 65-80 km only.
- There is a "reanalysis gap" from ~70-100 km

NRL Has Pioneered Research in 0-100 km Atmospheric Analysis

- NRL developed first 0-100 km prototype NWP reanalysis system – "NOGAPS-ALPHA" (Eckermann et al. 2009)
- NOGAPS-ALPHA provided reanalyses of the summer MLT in support of NASA's Aeronomy of Ice in the Mesosphere (AIM) mission (see Eckermann et al. 2009)
- In 2012/13 NRL retired NOGAPS to develop a nextgeneration Navy Global Environmental Model (NAVGEM)
- Here we leverage our NOGAPS-ALPHA experience to develop a prototype high-altitude NAVGEM system extending to ~110 km.

Eckermann, S. D., K. W. Hoppel, L. Coy, J. P. McCormack, D. E. Siskind, K. Nielsen, A. Kochenash, M. H. Stevens, C. R. Englert, and M. Hervig (2009), High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007, J. Atmos. Sol.-Terr. Phys., 71, 531-551.

Navy Global Environmental Model

NAVGEM Satellite Assimilation

Radiances Imagers/Sounders Satellite Derived Polar

DMSP F16 SSMIS LAS, UAS, Imager DMSP F17 SSMIS LAS, UAS, Imager DMSP F18 SSMIS LAS, UAS, Imager DMSP F19 SSMIS LAS, UAS, Imager METOP-A AMSU-A, IASI, MHS METOP-B AMSU-A, IASI, MHS NASA EOS Agua AIRS, AMSU-A NOAA 15 AMSU-A NOAA 16 AMSU-A NOAA 18 AMSU-A, MHS NOAA 19 AMSU-A, MHS NOAA NPP ATMS, CrIS, VIIRS GCOM-W1 AMSR-2 Megha-Tropiques MADRAS, SAPHIR OceanSat-2 MSG Severi MSG-II HIR Jason-1 (SSH, SWH) Jason-2 (SSH, SWH) Cryosat2 (SSH, SWH) Aquarius (Salinity) Geo Clear-sky: GOES, MTSAT, GMS

FY-3A,B,C,D,E,F MWTS,MWHS,MAIRS MERSI FY-RM 1,2 Meteor 3M MTVZA Satellite Derived Polar and Geostationary Winds

Coriolis WindSat Ocean Wind Vector DMSP F16 SSMIS Ocean Wind speed DMSP F17 SSMIS Ocean Wind speed DMSP F18 SSMIS Ocean Wind speed METOP-A AVHRR, ASCAT METOP-B AVHRR, ASCAT NASA EOS Aqua MODIS NASA EOS Terra MODIS, MISR NOAA NPP VIIRS

Meteosat 9 Meteosat 10 MTSAT NOAA GOES E NOAA GOES W NOAA GOES-R KMA COMS

FY-2E,F,G,H (Geo Winds) FY-4A,B,C (Geo Winds) FY-4A,B,C IR Spectrometer, MW?? GPS Radio Occultation

C/NOFS CORISS COSMIC FM1-6 GRACE-A MetOp-A GRAS MetOp-B GRAS SAC-C TerraSAR-X TanDEM-X COMS

Other Satellite Products

NASA EOS Aura MLS, HRDLS, OMI NASA TIMED SABER NOAA SBUV JPSS NPP OMPS SMOS SMAP FY-3A,B,C,D,E,F TOU

Coriolis WindSat TPW DMSP F16 SSMIS TPW DMSP F17 SSMIS TPW DMSP F18 SSMIS TPW

Operational

Research Only

Planned

Restricted Use

NAVGEM Changes

NAVGEM 1.3 Operational T425L60

High-Altitude NAVGEM T119L74

Local Time Coverage in MLT

2014

Spatial Coverage in 6 Hours

Global Model Physics Modules Needed for Upper Levels

- Heating due to UV O₂ and O₃ photolysis
- Non-LTE CO₂ longwave cooling to space
- Downward Diffusion of Thermospheric Heat
- Parameterization of Net Exothermic Chemical Heating
- Gravity-Wave Drag (Momentum Deposition)
 - Orographic Sources of Gravity Wave Drag (OGWD)
 - Nonorographic Sources of Gravity Wave Drag (NGWD)
 - Frictional Heating (KE Dissipation)
 - Momentum/Heat Mixing due to GW-Induced Turbulence
 - NGWD not carefully tuned as yet

Initial NAVGEM DEEPWAVE Reanalysis Test Runs

Name:	D3007DM2	L74T47	R3301C	T119L74	D3007DM
DSRC Machine:	KILRAIN	COPPER	COPPER	COPPER	KILRAIN
Outer Loop Resolution:	T119L74	T119L74	T425L60	T119L74	T119L74
Inner Loop Resolution	T119L74	T47L74	T119L60	T119L74	T119L74
2014 Reanalysis Period:	23 Mar-8 Sep	23 Mar-3 Aug	23 Mar-29 Jul	23 Mar-1 Aug	23 Mar-31 Oct
DIGFILT:	F	F	F	Т	F
UAS:	Т	Т	Т	Т	Т
UAS_REGTYPE	varBC	varBC	varBC	varBC	varBC
SBUV O3	F	F	Т	F	F
ATMS	Т	Т	Т	Т	Т
MLS (Aura)	Т	Т	F	Т	Т
SABER (TIMED)	Т	Т	F	Т	Т

- All experiments have AMSU-A, MHS, GPS, SSMIS (non-UAS), Aqua (AIRS) and IASI activated
- D3007DM2 rerun of D3007DM with updated varBC

"Zonal Mean" (140-190E) for June

"Zonal Mean" (140-190E) for June

DEEPWAVE

NAVGEM: June vs. July 2014

Zonal Winds: NAVGEM v. MERRA

DEEPWAVE

MERRA-NAVGEM Monthly Mean Zonal Wind October 2014

DEEPWAVE 2014

RF23: Winds over Auckland Island

Large Semidiurnal Tides ~90 km

DEEPWAVE

Semidiurnal Tidal Amplitudes at ~90 km & 53.8°S

Winds at 80-95 km measured by Southern Argentina Agile Meteor Radar (SAAMER)

Fritts, D. C., et al. (2010), Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides, J. Geophys. Res., 115, D18112, doi:10.1029/2010JD013850.

Amplitude (m/s)

80

RF 22 Zonal Winds: 13 July 0600Z

2014

For RF22 and RF23 NAVGEM MLT reanalysis over South Island yields:

- 1. weakening or reversal to mean easterlies
- 2. Strong semidiurnal tides

MLT MW observations suggest westerlies persist to ~90 km

Untuned NGWD with large phase speeds may be responsible

Limited radar observations suggest semidiurnal tides ~10 ms⁻¹ amplitude in winter MLT over New Zealand (Stening et al. JASTP 1995)

Really want to compare to Kingston meteor radar winds

- NAVGEM reanalyses are being generated to support DEEPWAVE GW science from 0-100 km
- Good comparisons with other low-altitude reanalyses
- Somewhat realistic closure of jets in MLT
- Strong semidiurnal tidal winds in MLT
- Fields available for DEEPWAVE scientific use
- New runs will add/tune physics and hopefully improve final MLT analysis
- Need validation against independent MLT obs
- Why are our resolved gravity waves so weak?

MERRA v. NAVGEM for RF22 0.3 hPa: 13 July 2014 0600 UTC

MERRA 2014071306 on 3.00e-01 hPa

DEEPWAVE

2014

BACKUP SLIDES

Sections Along RF23 Flight Track

DEEPWAVE 2014

Zonal Mean Winds for June

