

### Update on Satellite GW Products and Forward Model for DEEPWAVE Science



#### Steve Eckermann

Space Science Division, Naval Research Laboratory, Washington, DC, stephen.eckermann@nrl.navy.mil

#### **OUTLINE**:

Analysis of AIRS and CrIS GW Products Continues

Meaningful Model/Data Comparisons Requires a Forward Model to Connect Model Fields to Data

Forward Models for DEEPWAVE Science

- Representative vertical weighting functions
- Full 3D forward model capability











Department of the nvironment and Heritage astralian Antarctic Division



### Acknowledgements



#### NRL's DEEPWAVE research and support is/was supported by:

- The Chief of Naval Research (CNR) through the NRL base 6.1 and 6.2 research program
- The Office of Naval Research (ONR) Departmental Research Initiative (DRI)"Predictability of Seasonal and Intraseasonal Oscillations."
- The National Science Foundation
- The Oceanographer of the Navy through PMW-120/SPAWAR 6.4 transition contracts
- NASA through the Heliophysics Division SR&T and GI programs.



# The Model/Data Comparison Issue

DEEPWAVE





### **Community Radiative Transfer Model v2.1.3 (CRTM)**

- State-of-the-art operational radiative transfer (RT) model supported by Joint Center for Satellite Data Assimilation and used for radiance assimilation by US operational centers (e.g. NAVGEM)
- Updates AIRS and CrIS transmittance coefficients
   for all IR channel bands
- V2.1 includes non-LTE IR physics for upper altitudes (Chen et al. JOAT 2013)
- Includes Zeeman splitting of high-altitude microwave radiances.
- Allows user-specified channel subsets

### **Mean Profiles for Austral Winter**

2014





# **AIRS Channel Averaging** 50 raw channels $\rightarrow$ 12 net channels

| Gong W<br>Phys., 12 | u & Eckermann (Atmos. Chem.<br>2, 1701-1720, 2012)                         |                            |                           | Min. detectable GW var. $(\times 10^{-3} \text{ K}^2)$ |       |  |
|---------------------|----------------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------------------|-------|--|
| Pressure<br>(hPa)   | Channel numbers                                                            | Noise<br>(K <sup>2</sup> ) | NEdT<br>(K <sup>2</sup> ) | Zonal mean                                             | Map   |  |
| 2                   | 74                                                                         | 0.149                      | 0.165                     | 3.78                                                   | 26.64 |  |
| 2.5                 | 75                                                                         | 0.147                      | 0.166                     | 3.72                                                   | 26.22 |  |
| 3                   | 76                                                                         | 0.143                      | 0.161                     | 3.63                                                   | 25.55 |  |
| 4                   | 77                                                                         | 0.145                      | 0.160                     | 3.66                                                   | 25.80 |  |
| 7                   | 78                                                                         | 0.153                      | 0.162                     | 3.88                                                   | 27.34 |  |
| 10                  | 79                                                                         | 0.182                      | 0.172                     | 4.62                                                   | 32.53 |  |
| 20                  | 81, 82                                                                     | 0.084                      | 0.078                     | 2.14                                                   | 15.05 |  |
| 30                  | 102, 108, 114, 120, 125, 126                                               | 0.039                      | 0.029                     | 0.98                                                   | 6.88  |  |
| 40                  | 64, 88, 90, <b>94</b> , <b>100</b> , 106, 118                              | 0.033                      | 0.028                     | 0.83                                                   | 5.86  |  |
| 60                  | 66, 68, 70, 86, 87, 91, 93, <b>97</b> , 130                                | 0.026                      | 0.018                     | 0.66                                                   | 4.68  |  |
| 80                  | 92, 98, 104, 105, 110, 111, <b>116</b> , 117, 122, 123, 128, 129, 134, 140 | 0.020                      | 0.011                     | 0.50                                                   | 3.54  |  |
| 100                 | 132, 133, 138, 139, 149, 152                                               | 0.026                      | 0.014                     | 0.67                                                   | 4.73  |  |



### **AIRS Vertical Weighting Functions**





### **AIRS WF Variation with Scan Angle**



### DEEPWAVE 2014

### Two Options for DEEPWAVE Model/AIRS GW Comparisons

Comparing model GWs to AIRS GWs requires a forward model to convert 3D model T'(x,y,z) fields into a  $T'_B(x,y)$  fields along measurement swaths **Option 1** (Simple):  $W(z,\alpha)$  can now be sent to modelers

$$T_B(x_S, y_S) = \int_0^{z_S} W(z, \alpha) T(x, y, z, t) dz$$
$$T'_B(x_S, y_S) = T_B(x_S, y_S) - \overline{T_B}(x_S, y_S)$$

or  

$$T'(x, y, z) = T(x, y, z) - \overline{T}(x, y, z)$$

$$T'_B(x_S, y_S) = \int_0^{z_S} W(z, \alpha) T'(x, y, z, t) dz$$

#### Option 2 (Brute Force): Working at NRLDC, not readily distributable as yet



# Questions....



## **AIRS Premission Climatology**

#### (a) RMS AIRS Brightness Temperature: June-July 2003-2011 2.5 hPa





### AIRS GWs: 2-4 hPa June 2003-2011





### AIRS GWs: 2-4 hPa June 2014





### AIRS GWs: 2-4 hPa July 2003-2011





### AIRS GWs: 2-4 hPa July 2014



### **Reproduction of WFs for Every AIRS & CrIS Channel Using CRTM**

DEEPWAVE

2014





### **AIRS DEEPWAVE Gravity-Wave Product**

- GWs isolated as small horizontal scale perturbations in Level-1b swath-scanned thermal nadir radiances
- Channel averaging to reduce noise floors and increase S/N thresholds for GW detection
- For DEEPWAVE, provided "nowcast" AIRS GW product based on near-realtime (NRT) radiances
- Post DEEPWAVE, reprocessed 2014 data from 1 April to present using research-quality radiances

Eckermann and Wu, GRL, 2012 Gong, Wu and Eckermann, ACP, 2012



# **BACKUP SLIDES**



### **AIRS 40 hPa Radiance Channels**



| 135   | 140   | 145 | 150                                   | 155      | 160          | 165      | 170       | 175         | 180 | -175                                    |
|-------|-------|-----|---------------------------------------|----------|--------------|----------|-----------|-------------|-----|-----------------------------------------|
|       |       |     | E. Au                                 | Istralia |              |          |           |             |     |                                         |
|       |       |     |                                       | 1        |              |          |           |             |     |                                         |
|       |       |     |                                       | /·····   |              |          |           |             |     |                                         |
| 4     |       |     |                                       |          |              |          |           | North Isl   | and |                                         |
| V     | 7     |     |                                       |          |              |          |           |             |     |                                         |
|       | 5     |     |                                       |          |              |          |           |             |     |                                         |
|       |       |     | ļ                                     |          |              |          |           | 17          |     |                                         |
|       |       |     |                                       |          | Toomon Coo   |          |           |             |     |                                         |
|       |       |     | mania                                 |          | Tasman Sea   | •••••    | South Isl | and         |     |                                         |
|       |       |     |                                       |          |              |          |           |             |     |                                         |
|       |       |     |                                       |          |              |          |           |             |     |                                         |
| ····· |       |     | Tas W                                 | ake      |              |          |           |             |     | · 7/· · · · · · · · · · · · · · · · · · |
|       | 1     |     | 1                                     |          |              |          |           |             |     |                                         |
|       |       |     |                                       |          |              |          |           | SIW         | ake |                                         |
| ····· |       |     |                                       | ·····    |              |          |           |             |     |                                         |
|       |       |     |                                       | į        | Auck         | land Is. |           |             |     |                                         |
|       |       |     |                                       |          | C. Ocean WE  |          |           | S Ocoop E   |     |                                         |
| ····· |       |     |                                       | -        | D. OCBAN WO. |          |           | S. Ocean L. | 1   |                                         |
|       |       | ;   |                                       |          |              |          |           |             |     |                                         |
|       |       |     |                                       | ļ        |              |          |           |             |     |                                         |
|       | ····· |     | · · · · · · · · · · · · · · · · · · · |          |              | ·····    |           |             |     |                                         |
|       |       |     |                                       |          |              |          |           |             | _   |                                         |
|       |       |     |                                       |          |              |          |           |             |     |                                         |
|       |       |     |                                       |          |              |          |           |             |     |                                         |
|       | i     |     |                                       |          |              |          |           |             |     |                                         |
| 135   | 140   | 145 | 150                                   | 155      | 160          | 165      | 170       | 175         | 180 | -175                                    |













days



X







18-28

May





18-28

May





18-28

May





15-16

June





15-16

June





19-24

June





19-24

June





19-24

June













Slide 38

Aua

120

120

120

Aug

Aug