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Questions 

• Why are the DEEPWAVE A/C mountain wave 
spectra so broad? 

• Why are the u-power, MF and w-power spectra 
so different? 

• Is flow over the NZ massif more important than 
flow into the valleys? 

• What wavelength waves carry most of the 
momentum flux? 

• Does WRF also give broad spectra? 
• What are the implications of broad spectra? 

 



Spectral Variances 

• Mountain shape or streamline displacement   𝜂(𝑥) 

• Fourier Transform     �̂� 𝑘 = ∫ 𝜂 𝑥 exp −𝑖𝑘𝑥 𝑑𝑥∞
−∞  

• 𝑉𝑉𝑉 𝜂 = ∫ 𝜂2 𝑥 𝑑𝑥∞
−∞ = 1

2𝜋 ∫ �̂� 𝑘 �̂�(𝑘)∗𝑑𝑘∞
−∞  

• From hydrostatic mountain wave theory 

• 𝑉𝑉𝑉 𝑤 = ∫ 𝑤2 𝑥 𝑑𝑥∞
−∞ = 𝑈2

2𝜋 ∫ 𝑘2∞
−∞ �̂� 𝑘 �̂�(𝑘)∗𝑑𝑘  

• 𝐶𝐶𝐶(𝑢,𝑤) = ∫ 𝑢 𝑥 𝑤 𝑥 𝑑𝑥∞
−∞ = −(𝑁𝑈

2𝜋
)∫ 𝑘  �̂� 𝑘 �̂�(𝑘)∗𝑑𝑘∞

−∞  

• 𝑉𝑉𝑉 𝑢 = ∫ 𝑢2 𝑥 𝑑𝑥∞
−∞ = 𝑁2

2𝜋 ∫ �̂� 𝑘 �̂�(𝑘)∗𝑑𝑘∞
−∞   

• Note: P-power and T-power are similar to u-power 
    

 

weights 



Monochromatic Wave 
(blue line: typical buoyancy cut-off) 
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u-power 
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Ideal Rough hill 
(blue line: typical buoyancy cut-off) 

u-power 

MF & EFz w-power 

define Volume and Roughness Modes 



New Zealand transect, Mt. Cook 
(blue line: typical buoyancy cut-off) 

u-power 

MF & EFz w-power 



Terrain with volume and roughness 
(hydrostatic results) 

• Variance spectra are broad 
• Volume mode dominates the u-power 
• Roughness mode dominates the w-power 
• Both modes contribute to MF and EFz  

– Volume mode: large u’ and small w’ 
– Roughness mode: small u’ and large w’ 



Non-hydrostatic waves near the 
buoyancy cut-off 

Wavelength 

Vertically Propagating Evanescent 

𝑘 = 𝑁/𝑈 
𝜆 = 2πU/N~8km 



Non-hydrostatic waves near the 
buoyancy cut-off 

• Vertical wavenumber (m) approaches zero for 
k=N/U 

• 𝑚 = 𝑁
𝑈

[1 − (𝑘𝑈
𝑁

)2]1/2 

• Deep vertical penetration 
• Wind perturbation approaches zero 

• 𝑢� = 𝑚
𝑘
𝑤�  

• Momentum flux approaches zero 



Non-hydrostatic waves near the 
buoyancy cut-off 

(m=0; constant streamline spacing: u’=0) 
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Waves near the buoyancy cut-off 
(good w penetration, little u’ or MF) 

Example at z=12km:  roughness wavelength close to the buoyancy cut-off 



RF09 
Mountain Wave Flight  



RF04: 7 legs 
Vertical displacement 

Mountain to scale but offset vertically 

Mt 
Aspiring 

EFz= 2.8, 2.5, 5.1, 3.9, 
2.8, 0.5, 3.5 W/m2 



RF05: 9 Legs 
Vertical displacement 

Mountain to scale but offset vertically 

Mt 
Cook 

EFz= 5.0, 3.5, 3.6, 5.4,  
5.3, 5.1, 6.7 W/m2  

EFz=3.1, 1.7 W/m2 



RF09: 6 legs 
Vertical displacement 

Mountain to scale but offset vertically 

Mt 
Cook 

EFz= 3.7, 5.5, 7.3, 9.3 W/m2 

EFz= 2.8, 2.1 W/m2 
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Aircraft Transect Spectra 

Blue line is the buoyancy cut-off 
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2km WRF Simulated Transect Spectra 

Blue line is the buoyancy cut-off 



Variance 
Integration  
Domain 

Compare Variances from Volume and Roughness Modes 
• WRF with 2km grid 
• 3-day wave event from DEEPWAVE, July 3-5, 2014 
• Use a high-pass and low-pass spectral filter 



w-power 
 
MFx 
 
u-power 
 
Wind Speed 
& Direction 

2km WRF Simulation: 3-day wave event; z=12km 

Red = Roughness Mode  𝜆 < 60𝑘𝑚    
Blue = Volume Mode      𝜆 > 60𝑘𝑚 
Black = Total 



Spectral contributions 
• Roughness Mode I:  λ = 8 𝑡𝐶 15𝑘𝑚 

– Near the buoyancy cut-off  
– Non-hydrostatic 
– Dominates w-power.  Very little u-power. 
– Little MF or EFz 

• Roughness Mode II:  λ = 15 𝑡𝐶 40𝑘𝑚 
– Large w-power 
– Small but significant u-power 
– Dominates MF and Efz 
– Nearly hydrostatic 

• Volume Mode:  λ = 60 𝑡𝐶 300𝑘𝑚 
– Large u-power 
– Small but significant w-power 
– Carries 1/3 or less of the MF and EFz 
– Dominates the P-power and T-power too. 
– Hydrostatic 



Implications of Broad Spectra 
• Aircraft sensors must have accurate broad-band 

response. (OK, I think) 
• Numerical models must capture the Roughness Mode 

II: λ = 15 𝑡𝐶 40𝑘𝑚 to get the MF and EFz right. 
• Satellite IR sensors and Rayleigh Lidar will mostly see 

the T-power in the Volume Mode: λ = 60 𝑡𝐶 300𝑘𝑚; 
missing the MF in Roughness II. 

• Balloon data mostly see the u-power in the Volume 
Mode 

• Usual monochromatic relations between u, w, T, p and 
MF do not apply. 
 
 



The wave spectrum will influence  
wave breaking and GWD 

• Volume Mode (λ = 60 𝑡𝐶 300𝑘𝑚)  
– Dominates u-power , stagnation and 

wave breaking 
– Has steepening levels (not included 

in saturation theory) 
• Roughness Mode II (λ = 15 𝑡𝐶 40𝑘𝑚) 

– Dominates the MF and Efz 
– Weak u-power 
– MF deposition controlled by the 

Volume Mode 
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See talk by Chris Kruse. 

Queney solution 
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