Lagrangian evolution in CSET with GOES

Hans Mohrmann, Isabel McCoy, Jeremy McGibbon, Kyle Bretherton, Dylan Tom, Rob Wood, Chris Bretherton

CSET Trajectories

- HYSPLIT trajectories, initialized from outbound flight to HI, for planning resampling on return flight to CA
- initialized at 500m, isobaric, run on NCEP GFS (forecast) and NCEP GDAS (analysis)
- Total of 53 trajectories between 7 mission pairs, 72 hours forward from initial outbound sampling, most resampled ~50 hours later
- Available on field catalog (or email me!)
- http://www.atmos.washington.edu/~jk cm/CSET plots/GOES loops/rf06 rf07 12fps boxes.mp4

How good were the trajectories?

analysis

Distance from

Forecast error:

- measure of how close forecast was to analysis at 48h trajectories
- 215 km forecast error at 72 hours lead time (good enough for outbound flight planning)
- 58 km forecast error at 24 hours lead time meant that accurate return flight plans could be filed by FAA deadlines

Flight resampling error:

- Min distance between plane and analysisbased trajectory
- Mean flight resampling error was 27.3 km; more than half of all resampled trajectories were intercepted within 20km of analysis airmass location.

NASA Langley Cloud and Radiation Properties Data

- Based on VISST/SIST algorithms (many thanks to Pat Minnis!), ~.1°x.1°
- Day only: cloud LWP, clould r_{eff} , cloud τ , visible count
- Day/Night: cloud phase, CTH, CTP, CTT, skin temp

UW added variables:

- low cloud flag: CTH<4km, CTT>273.15K, 'cloud phase' = liquid
- N_d (Painemal and Zuidema, 2011):

$$N_d = 1.4067 \cdot 10^{-6} \left[\text{cm}^{-1/2} \right] \cdot \frac{\tau^{1/2}}{r_e^{5/2}}$$

UW Lagrangian GOES products

- 1. Extract GOES products along all CSET trajectories in 1x1°, 2x2°, 4x4° boxes
- 2. Compute statistics (25th, 50th, 75th %ile, mean) + cloud fraction for each box

N_d along all trajectories

- Most trajectories cover 155W-130W
- No high N_d west of ~145W

EIS and CF

- EIS (estimated inversion strength) main controlling factor in Sc-Cu transition
- Correlates strongly with CF
- Somewhat consistent with Wood and Bretherton (2006) – red line
- Shows sampling bias towards high CF

N_d vs CF

- need evolving N_d in LES to capture breakup processes?
- During CSET, only trajectories starting with extensive cloud cover (CF 5 > 0.8) had N_d > 40 cm⁻³
- Transition to lower CF along Lagrangian trajectories was associated with $N_{\rm d}$ values < 40 cm⁻³

N_d and ΔCF

 suggests larger change in CF if initial N_d is lower

Next Steps

- Validate against aircraft in-situ obs of N_a, N_d, CF
- Generate many more trajectories (since we're not actually limited by aircraft resampling), filter for e.g. trajectories starting as 'classic' Sc, sort by EIS₀
- Assess LWP as proxy for rain rate
- Validate GOES LWP against GCOM

N_d and ΔCF (Normalized by EIS)

 suggests larger change in CF if initial N_d is lower

