Marine Boundary-Layer and Cloud Analysis Using the ESRL EPIC/VOCALS East Pacific Ship Observation Database

C. W. Fairall(1), D. Wolfe (1), S. Pezoa (1), Simon DeSoeke (1), L. Bariteau (1, 2), Bruce Albrecht(3), Efthymios Serpetzoglou (3), Virendra Ghate (3), and Paquita Zuidema (3)

Results from NOAA Cruises

• PACS/EPIC 1999-2004 Enhanced Monitoring
 – 9 cruises
 – 6 cruises
• VOCALS 2008 REALLY big field program
Fig. 1. Annual mean climatology of downward surface radiation (W m\(^{-2}\)) from SRB satellite observation (top), CFS CMIP simulations (middle), as well as their differences (bottom).
“If you get the clouds right, chances are you get the feedbacks right” – John Mitchell, Chair WCRP Working Group on Coupled Modeling

OBSERVATION APPROACHES

• DOE/ARM CART sites: surface-based measurements, cloud profiling – comprehensive, expensive & a few fixed LAND sites

• Intensive ship-based field campaigns: similar to ARM but short duration – comprehensive and expensive
 – Example: Tropic Eastern Pacific PACS/Monitoring project
 – 1999-2004
 – Fairall et al. 2007

• Buoys
 – Much better spatial distribution/sampling
 – Full annual cycle
 – Much more limited in measured variables
 – Cronin et al. 2006a, 2006b
Observation Systems
Air-sea Fluxes, Clouds, Precipitation

Cloud Radar and Microwave Radiometer
Measurement Systems for Stratus Cruises

<table>
<thead>
<tr>
<th>Instrument/Variable</th>
<th>Oct 01</th>
<th>Nov 03</th>
<th>Dec 04</th>
<th>Oct 05</th>
<th>Oct 06</th>
<th>Oct 07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sonde</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aerosol</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Microwave</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ceilometer</td>
<td>X</td>
<td>~</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cloud radar</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>~</td>
</tr>
<tr>
<td>C-band radar</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Drizzle radar</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
PACS:
Spring 2000-2002
Fall 1999 - 2004

Cruise Tracks

Creation of Synthesis Data Sets:

- PACS/EPIC 1999-2004 Enhanced Monitoring, 10 cruises
 - Flux, Microwave, Ceilometer data in 3 separate files
 - Software to read, merge, process, plot the files

 - Merging already done for list of spiffy variables
PACS Synthesis Examples
ftp://ftp.etl.noaa.gov/user/cfairall/EPIC/epicmonitor/combined_files
PACS
October heat fluxes
95 & 110°W

- Model
- TAO buoy
- CORE (1984-2004) [Large and Yeager 2004]
- NOAA ship observations (1999-2002) [Fairall et al. 2008]
Stratus Synthesis Data
http://psd.etl.noaa.gov/psd/psd3/synthesis/

• Fall 2001, 2003-2007 (6 years) 20°S, 75-85°W.

• **Observe:** (10-min or Hourly time resolution)
 – Surface meteorology
 – Turbulent and radiative fluxes
 – Cloud vertical structure: top, base, and LCL.
 – Rawinsonde profiles
 – Column water vapor and liquid water path
 – Aerosols

• **Assess fluxes from ground**
Stratus Example: Buoy IR Flux Observations Used to Deduce Cloud Fraction

\[
\text{CloudFraction} = \frac{Rl_{\text{meas}} - Rl_{\text{clear}}}{Rl_{\text{overcast}} - Rl_{\text{clear}}}
\]
Stratus
October
heat fluxes
20°S

Model

WHOI ORS buoy
WHOI (1984-2002)
analysis
CORE (1984-2004)

NOAA ship observations