Structures of Tropical Tropospheric
Ozone Profiles
Observed in CONTRAST and
-— ) Analyses of the Controlling Mechanisms
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The “Conventional View” of the Tropical Ozone Profile:
“seahorse shaped”
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"near zero ozone?" _
Ozone profile

e measurements in the
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I 091011: 33.5°N

5 ! 091012: 26.2°N
E’ n

£ TR i 091014: 18.8°N
S ) :
g 470 - -

T S3<S ] 091018: 1.1°N

g T i 091019: 3.1°S

L - 091020: 7.2°S

)y 091021: 11.8°S

0 50 100 150 091022: 14.4°S

Ozone [ppbv]

Rex, M., Wohltmann,. iy Ridder, ™ Lehménn, R.,Roéenlbf, Ay Wennbérg, P, Weisenstein, D., Notholt,
J., Krager, K., Mohr, V., and Tegtmeier, S.: A tropical West Pacific OH minimum and implications for

stratospheric cornpositiorn, Alues 'Dnemi/Pers. 1N 4827-484 1, doi:10.5194/acp-14-4827-2014,
2014.



SCONTRAST; .

WP Tropospheric O; - a Bi-modal Distribution
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340 K range

modal distribution is most pronounced
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Relationship of O; Enhanced Layer and the
Jet Core

CONTRAST Ozone, Jan-Feb, 2014
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Persistent presence of layers of anti-correlated
O; &H,0
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Where we measured thin filaments of O; layers that
are anti-correlated with H,O
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“Goose-Shaped” profiles?
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The convectively controlled O; profile: between two

TOWErS (no enhanced ozone layer here...)
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The convectively controlled O; profile: Ahead of

a front/shear line (no enhanced ozone layer here...)
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RF06 O, profiles: three distinct air mass regions
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The “Non-Tropical Mode” is correlated with dry air mass
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The “truth” revealed by CONTRAST measurements:
the "belly of the seahorse” is a result of averaging two modes

Latitude Range: -20.0 to 22.0; Longitude Range: 130.0 to 160.0; Theta Range: 300 to 365 K
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TOGA COARE: “Dry Intrusions”

A Proposed Mechanism for the Intrusion of Dry Air into the
Tropical Western Pacific Region

Kunio YONEYAMA

Japan Marine Science and Technology Center, Yokosuka, Japan

DaviD B. PARSONS

Meétéo France/CNRM, Toulouse, France, and National Center for Atmospheric Research,* Boulder, Colorado

(Manuscript received 20 October 1997, in final form 27 May 1998)

ABSTRACT

Recent studies using data from the Tropical Ocean and Global Atmosphere program’s Coupled Ocean—At-
mosphere Response Experiment (TOGA COARE) have shown that synoptic-scale areas of extremely dry air
can occur in the troposphere over the equatorial western Pacific. These layers of extremely dry air modify
convective activity and the vertical profile of radiation in clear air. At the present time there 1s some disagreement
as to the dynamic mechanism responsible for these events and a number of their characteristics are relatively
unknown. In this study, the origin and characteristics of the dry air events were investigated through analysis
of TOGA COARE rawinsonde data and examination of global analyses from two different forecast centers.
These drying events were found to be very common and evidence was presented that their intensity was
underestimated in the global analyses. These dry events were shown to most often originate in the Northern
(winter) Hemisphere as troughs associated with baroclinic waves intensified and expanded equatorward, leading
to a process analogous to Rossby wave breaking. In these cases, the dry air at the edge of the westerlies at
upper levels was incorporated into the equatorward extension of thin NE-SW tropospheric troughs, where it
subsided and was subsequently advected equatorward. If sufficient subsidence took place, the dry air continued
flowing equatorward on the eastern edge of well-defined anticyclones in the lower troposphere. The dry air 1n
one case originated in a Southern (summer) Hemisphere trough that was associated with midlatitude baroclinic
waves that propagated equatorward and developed into a series of distinct disturbances along a subtropical jet.
In both the Northern and Southern Hemisphere events, the subsiding dry air in the midtroposphere was injected
into the fringes of the Tropics, where 1t was able to reach equatorial regions if it interacted with favorable

am2@iopP Heifi eoftep dFpren 5256 ST M2 O prox@ddj that these intrusions of dry air could induce droughts
in the Tropics through decreasing deep convective activity. The implication of this study 1s that these droughts
are actually induced by midlatitude processes.




PEM-Tropics A, B: ozone layers

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D5, PAGES 5745-5764, MARCH 20, 1999

Measurements of atmospheric layers from the NASA DC-8 and
P-3B aircraft during PEM-Tropics A

P. Stoller,' J. Y. N. Cho,! R. E. Newell,! V. Thouret,"? Y. Zhu,! M. A. Carroll,’
G. M. Albercook,’ B. E. Anderson,’ J. D. W. Barrick,’ E. V. Browell,’
G. L. Gregory,® G. W. Sachse,* S. Vay,* J. D. Bradshaw,> and S. Sandholm’

Abstract. Tropospheric vertical structure was analyzed using in situ measurements of O;, CO,
CH., and H,O taken on board the NASA DC-8 aircraft during three Pacific Exploratory Missions
(PEMs): PEM-West A, September-October 1991 in the western Pacific; PEM-West B, February-
March 1994 in the western Pacific; and PEM-Tropics A, September-October 1996 in the central
and eastern Pacific. PEM-Tropics A added measurements from the NASA P3-B aircraft. We
used a new mode-based method to define a background against which to find layers. Using only
0O; and H,0, we found 472 layers in PEM-Tropics A (0.72 layers per vertical kilometer profiled),
237 layers in PEM-West A (0.54 layers’km), and 158 layers in PEM-West B (0.41 layers/km).
Using all constituents, we found 187 layers in PEM-Tropics A (0.43 layers’km), 128 layers in
PEM-West A (0.29 layers/km), and 80 layers in PEM-West B (0.21 layers/km). Stratospheric
air, sometimes mixed with trapped pollution, was the dominant layer source in all three
missions. The larger number of layers per kilometer in PEM-Tropics A was probably due to
repeated profiling of several "superlayers" visible in many of the mission lidar and potential
vorticity profiles. The thickness of the superlayers was of order 1 km, and the horizontal extent
was of order 1000 km. We found that layers have an important effect on the thermal structure.
An example based on ozonesonde data from Tahiti is shown, where a dry, subsiding layer was
stabilized by much greater radiative cooling at the base than at the top. The stabilized layer can
trap pollution and force vertical plumes to spread into horizontal layers.
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Ozone-enhanced layers in the troposphere over the equatorial
Pacific Ocean and the influence of transport of midlatitude
UT/LS air
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Abstract. Occurrence of ozone (O3)-enhanced lay-
ers in the troposphere over the equatorial Pacific Ocean
and their seasonal variation were investigated based on
ozonesonde data obtained at three Southern Hemisphere AD-
ditional OZonesondes (SHADOZ) sites, Watukosek, Ameri-
can Samoa and San Cristobal, for 6 years between 1998 and
2003. Os-enhanced layers were found in about 50% of ob-
served O3 profiles at the three sites. The formation processes
of Osz-enhanced layers were investigated by meteorological
analyses including backward trajectories. On numerous oc-
casions, Os-enhanced layers resulted from the transport of
air masses affected by biomass burning. The contribution of
this process was about 30% at San Cristobal during the pe-
riods from February to March and from August to Septem-
ber, while it was relatively low, about 10%, at Watukosek and
Samoa. A significant number of the O3-enhanced layers were
attributed to the transport of midlatitude upper-troposphere

and downward transport of the midlatitude UT/LS air masses

1 Introduction

The tropospheric ozone (O3) concentration in the tropics is
generally low, especially over the Pacific Ocean, in com-
parison with that in the midlatitude (e.g., Fishman et al.,
1990; Brasseur et al., 1999; Kondo et al., 2002). How-
ever, Oz-enhanced layers are often observed in the tropics
(e.g.., Newell et al., 1996; Stoller et al., 1999; Thouret et
al., 2001). Photochemical production from the O3 precur-
sor gases emitted from biomass burning is considered to in-
crease O3 concentrations in the tropical troposphere. In-
creases in O3 associated with biomass burning over the trop-
ical Pacific Ocean have been repeatedly reported. Oltmans
et al. (2001) suggested that the O3-enhanced layers observed
at Fiji (18.1° S, 178.2° E), Samoa (14.3° S, 189.4° E), Tahiti
(18.0°S, 211.0°E), and Galapagos (0.9° S, 270.4° E) with
ozonesondes were attributable to the transport of air masses

lawer-stratgsphere T/LS(L;' Mete °icg.b analys ffected by biomass burning in Australia and South Amer-
Pan, Zoigfﬁgﬁﬁ%m% m&!‘ ;ﬁl&tfﬁ%u o(lzi’a.go-l 4ca. In Indonesia, during the local late dry season between

September and November, enhancements of tropospheric O



Origins of Dry Air in the Tropics and Subtropics

PiERO CAU, JOHN METHVEN, AND BRIAN HOSKINS
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Significant correlation of ozone and HCN:
—-Role of Biomass Burning (BB)?
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O; Layer structure negatively correlates

H20 [%pv] . P1r8§ile # 51

T ey with H,O also found positively correlates
£ RFO7, 2°N with CO in some cases
o 10[ 1
2 s E rf07 20140128 Profile # 5
< L 4
g 6 ] 60 80 CO fppbyl,- Black 120 140
§4:_ = ] - 7T 1 T T T 1 T T T T T r T 1T T 7
= 2? é [Kml [Kft] 100 ag° PPel-Mageny
10 20 30 40 50 s 151
03 [ppbv] l
| 150
- 40

200

-
o
1

250

300

400

54 500

U.S. Standard Atmosphere Altitude
Pressure [hPa]




UTLS and
ical mode,
itributions?

On going effort of many:
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Tracer relationships
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Case study of RF07
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Anti-correlation of O, and H.O
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Significant correlation between O; and HCN
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Origins of Dry Air in the Tropics and Subtropics

PIERO CAU, JOHN METHVEN, AND BRIAN HOSKINS
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CAM-chem SD run for CONTRAST period

CAM-CHEM 320K 20140101

Doug Kinnison
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CONTRAST rf07 2014-01-29 18:00 -0.00 Day Back Trajectory
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A working conceptual model:
CAM-Chem in Forecast Mode -

Mixed UTLS

o

@

0
Y
o C
o ™
S -
q‘ =

=

~ c

- (a8
0 ®
a

(34%1)




A working conceptual model:

Prados et al., 1999 (AEROCE) Homeyer et al., 2011 (STARTOS8 case study)

T FRONTS AT#152/28, nm*
‘ ‘ Ty D23304 HOMEYER ET AL.: CON

COLD

Plate 1a. GOES 8 IR image for April 28, 1996, at 1515 UTC as the aircraft was taking off from Bermuda.
The temperature scale is located to the right (K). The star indicates the location of Bermuda. There is a new
storm system developing over the midwestemn and central United States associated with a large area of con-
vection. Crosses represent the location of the two clouds used to trace air moving toward Bermuda. Also note
the primary front located near Bermuda.
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TROPOSPHERE

TROPOPAUSE

V' FOLD

oo \

Figure 14. Conceptual model of the synoptic meteorologi-
cal conditions conducive to convective injection in strato-
spheric intrusions. The upper left is a representation of the
a3 . . : associated surface and upper-level meteorological condi-
N S e e G S L tions. The vertical section, along line A—B, shows the strato-

spheric intrusion ahead of the surface cold front (a “split
4 front”) and location of convective injection.

WARM

A B

Plate 1b. GOES 8 IR image from April 28, 1996, at 1915 UTC. The aircraft has traveled its maximum dis-
tance west of Bermuda. Also shown is lhrevﬁgm track and the location of Bermuda (star)., Fragments of cloud
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It is only a beginning...

Its 100% from BB..




