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What are these dry layers? 

• They were not extensively investigated until the 
TOGA COARE experiment in 1992-1993. 

• They received a lot of attention by the tropical 
convection crowd following TOGA COARE (well 
over two dozen papers). 

• They are called ‘dry intrusions’ since the dry air 
originates aloft at higher latitudes and subsides 
into the tropics in long filaments several hundred 
km in width. 

                                             Redelsperger et al. (2002) 



What are these dry layers? 

• It takes about 10 to 20 days for the atmosphere 
to recover following a dry intrusion. 

• Dry intrusions are important for the tropospheric 
moisture budget and modulate the convection. 

                                                  Parsons et al. (2000) 

 

• Hayashi et al (2008) related the dry layers to 
elevated O3 levels. 





From RPG 

1992 



Chuuk sounding, 10 February 2014 

Note that the base of the dry 
layer is usually accompanied 
by a temperature inversion 
as explained in detail by 
Mapes and Zuidema (1996). 



Several dry intrusions 
occurred during the TOGA-
COARE period, but some of 
them were constrained to 
the upper troposphere. 

DeMott and Rutledge 1998 

4-month 

Blue: dry 
Red: moist 



Chuuk RH  (7.5N, 151.9E) 

January February 

CONTRAST time series exhibit periodic dry intrusions as occurred during TOGA-COARE 



Yoneyama and Parsons (1999) noted that dry events are very common and can be 
classified into two types: 
 
1) Low-level event (below 500 hPa), that is extremely dry and arrives suddenly. It 

lasts 3 to 7 days. 
 

2) Upper-level event (above 550 hPa) that is not as dry, but can last longer (more 
than 7 days). 
 

 
“Many studies have reported that these extensive dry air layers cannot be explained 
by vertical adiabatic displacements. Instead, the horizontal advection of air from the 
subtropics has been shown to account for the origins of these air masses”. 
 
“A single mechanism (baroclinic waves) is responsible for advection of dry air into the 
Tropics, once in the Tropics dry air is advected by different type of disturbances”. 



Yoneyama and Parsons, 1998 

Example of Rossby wave-
breaking during the 
November 1992 event. 



Mapes and Zuidema (1996): 
 
   “[the extremely dry layer] has undergone something like 20 days of radiative 
cooling since it was last in contact with a low-latitude sea-surface.” 
 
  “Clearly, horizontal advection is the proximate cause of the main dry layer…”  



Cau et al., 2005 

November 1992 
TOGA COARE 
events using 
ERA-40 data. 



Cau et al 2007. “Origins of 
dry air in the tropics and 
subtropics”. J. Climate. 
 
 
 
Trajectory analysis using ERA-
40 data from January 1993.  
 
 

Dry air in the western 
Pacific mainly originates 
near the jet location east 
of Japan, over the Indian 
Ocean and Tibet. 



Cau et al 2007. 
 
 
 



The accuracy of the NWS radiosonde replacement system 
has been questioned. Therefore, we wish to verify the 
reliability of the NWS soundings by comparing them with 
proximity soundings from the GV.  



GV takeoff sounding 

Courtesy Shawn Honomichl 

RF06  25 Jan 2014 

NWS Sounding 

00z = 10 A.M. local 



GV Chuuk sounding 

RF07  29 Jan 2014 

NWS Sounding 



Chuuk RH (7.5N, 151.9E)  

January February 

RF07 RF10 



NWS Chuuk sounding 

RF07 occurred just at the onset of a dry event at Chuuk 



RF10  08 Feb 2014 

GV sounding (about 7.5N, 148E) NWS Chuuk Sounding 

400 km west of Chuuk 





Majuro RH  (7.1N, 171.4E) 

January February 



Pohnpei RH  (7.0N, 158.2E) 

January February 



Chuuk RH  (7.5N, 151.9E) 

January February 



Guam RH  (13.4N, 144.8E) 

January February 



Yap RH  (9.5N, 138.1E) 

January February 



Koror RH  (7.3N, 134.5E) 

January February 



Water vapor loop from 9 Feb to 13 Feb 



GFS analysis 

The 27-pressure-level GFS (50-mb spacing) only captures the broad features of the 
moisture profile. It completely misses the thin layers and the shallow inversions. Perhaps 
the native resolution data captures these features. 



• Tropical dynamicists’ consensus is that the 
low-latitude dry air comes from the 
subtropics. 

• Convection preferentially detrains into stable 
layers such those associated with dry tongues 
(M&Z, Bretherton and Smolarkiewicz 1989). 

•  Perhaps the thin, dry layers are what remains 
of a thick dry layer that has had several day’s 
worth of convection detraining into it. 

Concluding thoughts 



Thank you! 
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