
ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY – SP-078 

1 

 

The separation of noise and signal components in 

Doppler RADAR returns 
 

M. Dixon and J.C. Hubbert 

National Center for Atmospheric Research, Boulder, Colorado, USA, dixon@ucar.edu 

 25 June 2012 

 

Mike Dixon 

1. Introduction 

Knowing the correct noise value in a Doppler radar return is 

essential for (a) computing moments with good data quality 

(Ivic and Torres 2010), (b) optionally censoring (i.e. setting 

to missing) data which contains noise only and (c) 

contributing to a data quality metric (Friedrich et. al 2006, 

Osrodka et. al 2010). The receiver noise, however well 

calibrated a radar may be, will drift over time. Clutter, 

weather and water vapor emit radiation at all wavelengths, 

and these emissions will add to the thermal noise. This is 

especially problematic at shorter wavelengths, such as Ka-

band and W-band. Radar moments in noise-only regions 

have well-known statistical properties. For stationary radars 

(such as vertically pointing instruments) it is possible to 

compute these statistics from a single gate over time. For a 

scanning radar we need to consider the statistics from a 

number of adjacent gates, substituting variability in space for 

variability in time. In this paper we present a method to 

identify noise regions in data from a scanning radar, utilizing 

the known behavior of returned power and radial velocity in 

noise. We show that the method is applicable to radars over 

a range of frequencies, from S-band to Ka-band. We 

demonstrate that the method can robustly identify noise 

regions, allowing us to compute the noise on a ray-by-ray 

basis. The radar moments for individual beams can therefore 

be effectively adjusted. 

The sensitivity of the radar to these emissions depends on 

the wavelength of the radar. Fig. 1, below, shows an 

example of increased noise in a PPI scan from ground clutter 

targets at S-band – see the yellow ellipse. 

 

Fig. 1: S-band low level scan showing increased noise 

around 300 degrees, caused by ground clutter. 

Similarly Fig. 2 shows increased noise at lower elevation 

angles for a Ka-band RHI scan. 

 

Fig. 2: Ka-band RHI showing increased noise in the lower 

levels due to thermal emissions from storms and water 

vapor 

Both of these cases come from the SPol-Ka radar during the 

2011/2012 DYNAMO field project in the Maldive Islands. 

Recent work on this topic by Ivic and Torres (2011) makes 

use of the raw I/Q time series to analyze the behavior of 

power vs. range. Their algorithm has a number of steps, the 

first of which identifies regions along a ray with almost 

constant power levels, since that is a property of noise 

regions. They then follow up with techniques designed to 

eliminate false detections, and finally they compute the noise 

using gates that have been identified as containing only 

noise. They verify their results by comparing with known 

noise power computed at gates at long range. 

In this paper we take an approach which shares some of the 

ideas from Ivic and Torres, but which uses moments 

computed over a dwell rather than the raw time series. As in 

Ivic and Torres, we make use of the fact that power is rather 

constant in noise regions. In addition, we rely on the random 

nature of radial velocity estimates in noise regions. We draw 

on experience with a clutter detection algorithm that makes 

use of fuzzy logic to combine information from a number of 

features into a single metric, which we then use to identify 

noise. Having identified the noise gates, we compute the 

noise by averaging the powers at all of those gates, provided 

there are a sufficient number of them in a single ray (> 50). 

We also optionally censor the moments at noise gates to 

improve compression in the stored data files. 

2. Noise identification method 

The noise identification method makes use of the fuzzy logic 

approach used successfully in the Clutter Mitigation 
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Decision algorithm (Hubbert et. al 2009). The first step is to 

compute a number of so-called feature fields, which are 

designed to indicate either the presence or absence of the 

phenomenon under study. We then use interest maps to 

convert the feature fields into interest fields, each of which 

has a value bounded between 0 and 1, inclusively. These 

interest fields are then combined into a single decision field. 

A threshold is applied to this decision field, yielding either a 

true or false decision for the presence of the phenomenon. 

We use three feature fields in this algorithm, which are 

designed to be independent of each other to the greatest 

extent possible. 

To demonstrate the method, we use an S-band RHI case. 

Fig. 3 shows the reflectivity field, while Fig. 4 shows the 

signal-to-noise ratio (SNR) for this case. There are weather 

and clear-air echoes below about 9 km, and generally noise 

only above that height. 

 

Fig. 3: S-band reflectivity for RHI example case 

 

Fig. 4: S-band SNR for RHI example case. 

The red ellipses highlight regions in which the SNR is low 

but there is a coherent velocity field (See Fig. 5). 

3. Feature fields 

3.1 Standard deviation of phase in range (PHASE_SDEV) 

When some signal is present at a gate, the radial velocity has 

values that show ‘coherence’ in range – in other words, 

adjacent gates have somewhat similar values for velocity, 

and it is somewhat smoothly varying. In noise, however, the 

velocity signature appears random. Fig. 5 below shows the 

radial velocity for this case. The random nature of the 

velocity in the noise region is readily observable. The red 

ellipses highlight regions in which the SNR is rather low – 

less than -6 dB, and yet the velocity field still shows 

coherence. This demonstrates how sensitive the velocity 

field is to low SNR coherent signals and thus velocity makes 

a good indicator of noise-only regions. 

 

Fig. 5: RHI at S-band, showing the random nature of 

velocity in noise. 

In our method, we use the Doppler phase rather than the 

velocity itself for detecting noise. Velocity is the phase 

scaled by the Nyquist velocity, and the phase varies from -

180 degrees to +180 degrees. We postulate that the phase is 

random in regions of pure thermal noise. For a uniformly-

distributed random variable, the expected value of the 

variance can be shown to be equal to the square of the value 

range divided by 12. For random phase in degrees, the 

expected value of the standard deviation is: 

 
2

ˆ 360 / 12 104 deg   

We compute the standard deviation over a series of gates in 

range, typically 9. There are, of course, gradients in the 

phase that will contribute to its standard deviation. 

Therefore, we first remove the any trend by fitting a straight 

line and computing the residuals – i.e. the difference 

between the original values and the fitted line. The phase 

standard deviation (PHASE_SDEV) is computed using the 

residuals. 

Fig. 6 shows the phase field, and Fig. 7 the PHASE_SDEV 

field. 

 

Fig. 6: Phase in degrees 
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Fig. 7: PHASE_SDEV – standard deviation of phase in 

range, in degrees, over 9 gates 

In regions with signal, PHASE_SDEV has values generally 

below 20, while in noise the values are much higher, above 

70 or so, on the order of the theoretical value of 104 for 

random phase. Therefore, this shows promise as a good 

discriminator between signal and noise. 

3.2 Standard deviation of power in range (DBM_SDEV) 

As shown by Ivic and Torres (2011), in regions of noise the 

power does not vary significantly with range. In contrast, in 

echoes, the variability in power is considerable. We capture 

this behavior by computing the standard deviation of power, 

in log (dB) units, over a number of range gates, typically 9. 

Fig. 8 shows this feature field, which we refer to as 

DBM_SDEV. Low values, less than 0.5, are indicative of 

noise, and values greater than 0.75 indicate the presence of 

signal. 

 

Fig. 8: DBM_SDEV – standard deviation of power, in dB 

units, over 9 gates 

3.3 Mean of normalized coherent power – NCP_MEAN 

The so-called NCP (normalized coherent power) is defined 

as the magnitude of the lag1 covariance divided by the lag0 

power. It gives an indication of how ‘coherent’ the signal is, 

in other words how predictable the phase is from one sample 

to the next. NCP is unit-less and ranges from 0 to 1. In noise 

NCP is low, and in signal it tends to be high. NCP is 

inversely related to spectrum width, so it must be used 

carefully. If turbulence is present, or the sample volume is 

large (as at long range), the spectrum width will be high and 

NCP will be low, even if signal is present. 

To improve the reliability of this feature field, we compute a 

mean over a number of gates, typically 9. We refer to this 

field as NCP_MEAN – see Fig. 9. Values below 0.15 are 

indicative of noise. 

 

Fig. 9: NCP_MEAN  – mean of normalized coherent power, 

over 9 gates 

4. Interest maps 

In order to combine the feature fields, we need to remap 

their values into normalized ‘interest’ values ranging from 0 

to 1. We do this by applying an interest map, which is a 

simple piece-wise linear mapping function. Fig. 10 shows 

the details of these mappings. The maps show the transition 

from 0 to 1, or view versa, as the feature field values vary. 

On either side of the transition, the interest value is constant 

at either 0 or 1. 
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Fig. 10: Interest maps for converting 

feature fields to interest fields 

5. Finding the noise locations 

The next step is to combine the interest fields, as follows: 

 for each of the three feature fields, compute the 

interest by applying the interest mapping translation 
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 multiply each interest value by a suitable weight 

 compute the sum of the weighted interest values, 

divided by the sum of the weights. This yields a 

normalized combined interest value. 

We then apply a threshold to the combined interest value, in 

order to deduce whether signal is present or if there is only 

noise.  

Table 1 lists the he weights and thresholds we applied for 

the S-band and Ka-band cases. 

 S-band Ka-band 

Weight for 

PHASE_SDEV 

1.0 1.0 

Weight for 

DBM_SDEV 

1.0 1.0 

Weight for 

NCP_MEAN 

0.65 1.0 

Interest threshold 

for noise 

0.65 0.9 

Table 1: interest map weights and thresholds 

Fig. 11 shows the result for the S-band RHI case – below 9 

km we have mostly signal, and above 9 km mostly noise. 

 

Fig. 11: flag indicating the presence of noise only 

The advantage of using a number of feature fields is 

robustness. Errors which occur in a single field are mitigated 

by information from the other fields. Specifically, it is 

helpful to have at least 3 fields, as we do in this case. Using 

only 2 fields can be problematic because we then need to 

decide which of the 2 fields should take precedence in the 

event of a tie. Having a third field allows us to break the tie. 

6. Ka-band case 

In general, the weights and thresholds applied should be 

very similar for radars of different frequencies, and would 

follow those used for the S-band. In this particular Ka-band 

case, the radar had problems with phase locking, making the 

PHASE_SDEV field less reliable that it ideally would be. 

Therefore, we decided to weight the fields equally, and set a 

high threshold for determining the presence of noise only. 

The following figures show the result of applying the 

method to data from a Ka-band radar in PPI mode at 0.5 

degrees elevation. 

 

Fig. 12: Ka-band DBZ, 0.5 degrees elevation 

 

Fig. 13: Ka-band PHASE_SDEV 

 

Fig. 14: Ka-band DBM_SDEV 
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Fig. 15: Ka-band NCP_MEAN 

 

Fig. 16: Ka-band noise flag 

7. Applying the method for noise estimation and 

censoring 

7.1 Computing the noise power for each ray 

After identifying the gates at which only noise is present, the 

noise for each ray can be determined by computing the mean 

power for the gates that have only noise. To do so requires, 

of course, that a certain minimum number of gates – say 50 - 

have noise only, so that a good estimate of the mean noise 

power can be computed. If too few gates are available, the 

mean noise estimate will be unreliable. 

There are a number of approaches to handling the case in 

which the number of noise gates is too low: (a) we can use 

the calibrated noise value; (b) we can use a running estimate 

of the noise from previous rays; or (c) we can keep an 

estimate of mean noise for rays by azimuth and elevation, 

and use the value for the azimuth and elevation closest to the 

actual ray. 

We implemented method (c), by creating a table of elevation 

and azimuth and keeping a running estimate of the noise for 

each element in that table. If the number of gates available 

for computing noise at a gate fall below say, 50, we use the 

estimated value from the table instead. 

7.2 Censoring using noise gates 

Censoring data at gates that contain only noise is a useful 

technique for making the ‘good’ data easier to visualize, and 

for compressing the data to keep the file sizes small. Once 

we have identified the gates at which only noise is present, 

we can simply censor the data fields at those gates, setting 

the value to ‘missing’. 

7.3 Results 

The figures below show the result of applying this method to 

a low-level PPI at S-band. Figures 17 and 18 show the 

reflectivity and phase for a 0.5 degree PPI, with no 

censoring applied. 

 

Fig. 17: S-band DBZ PPI at 0.5 degrees. 

No censoring is applied. 

 

Fig. 18: S-band phase. 

No censoring is applied. 

Fig. 19 shows the gates that are flagged by this algorithm as 

having noise only. Fig. 20 shows the ‘noise-bias’ field, 

computed as the ray-estimated mean noise minus the 

calibrated noise value. This shows an increase in mean noise 

in the NW quadrant due to ground clutter. Figures 21 and 22 

show the reflectivity and velocity fields, after censoring of 

the noise-only gates. 
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Fig. 19: Noise flag for S-band 0.5 degree PPI 

 

Fig. 20: Noise bias for 0.5 degree PPI. This is the mean 

noise, estimated for each ray, minus the calibrated noise 

value. 

 

Fig. 21: S-band DBZ at 0.5 degrees, after censoring 

 

Fig. 22: S-band velocity, at 0.5 degrees, after censoring 

8. Summary and conclusions 

We augment previously published techniques to develop a 

method for identifying radar range gates at which only noise 

is present. The method makes use of feature fields and fuzzy 

logic to combine the information from a number of fields 

into a single decision field. Accurate estimates of the thermal 

background noise can significantly improve low SNR radar 

estimates. 

The method has proved effective in identifying noise in both 

S-band and Ka-band radars. 
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