Researchers at Montana State University (MSU) developed the seminal diode-laser-based (DLB) lidar technology for the purpose of water vapor profiling [Nehrir et al., 2009, 2011, 2012].  A more capable DLB lidar was designed and built by NCAR and MSU [Repasky et al., 2013, Spuler et al. 2015]. The instrument has been shown to deliver accurate retrievals of water vapor in the lower troposphere and produce scientifically significant data [Weckwerth et al. 2016].  A high spectral resolution channel, based on the DLB lidar architecture, was developed by NCAR [Hayman and Spuler 2017] and has been incorporated into one of the instruments.

1. Nehrir, A. R., K. S. Repasky, J. L. Carlsten, M. D. Obland and J. A. Shaw, 2009: Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL). Journal of Atmospheric and Oceanic Technology, 26(4), 733–745, doi:10.1175/2008JTECHA1201.1

2. Nehrir, A. R., K. S. Repasky and J. L. Carlsten, 2011: Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere. Journal of Atmospheric and Oceanic Technology, 28(2), 131–147, doi:10.1175/2010JTECHA1452.1

3. Nehrir, A. R., K. S. Repasky and J. L. Carlsten, 2012: "Micropulse water vapor differential absorption lidar: transmitter design and performance," Opt. Express 20, 25137-25151, doi:10.1364/OE.20.025137

4. Repasky, K., D. Moen, S. Spuler, A. R. Nehrir and J. L. Carlsten, 2013: Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere, Remote Sensing, 5, 6241–6259.  doi:10.3390/rs5126241

5. Spuler, S. M., K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, 2015: Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor, Atmos. Meas. Tech., 8, 1073-1087, doi:10.5194/amt-8-1073-2015

6. Weckwerth, T. M., K. Weber, D. D. Turner, and S. M. Spuler, 2016: Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL). J. Atmos. Oceanic Technol., 33, 2353-2372, doi: 10.1175/JTECH-D-16-0119.1

7. Hayman M. and S. Spuler, 2017: Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosol. Opt. Express, 25(24) doi: 10.1364/OE.25.0A1096

8. Repasky, K. S., C. E. Bunn,  M. Hayman, R. A. Stillwell, and S. M. Spuler, 2019: Modeling the Performance of a Diode Laser-Based (DLB) Micro-Pulse Differential absorption Lidar (MPD) for Temperature Profiling in the Lower Troposphere. Opt. Express, 27(23), 33543-33563.  doi: 10.1364/OE.27.033543

9. Stillwell, R. A., S. M. Spuler, M. Hayman, K. S. Repasky, and C. E. Bunn, 2020: Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature. Opt. Express, 28(1) doi: 0.1364/OE.379804