Publications

1. Eloranta, E. W., 2005: Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Claus Weitkamp ed., pp. 143-164, Springer Science+Business Media Inc, New York, USA, 2005.

2. Shipley, S. T., D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation, Applied Optics, 22, pp. 3716-3724, doi: http://dx.doi.org/10.1364/AO.22.003716.

3. Sroga, J. T., E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tyron, 1983: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis, Applied Optics, 22, pp. 3725-3732, doi: http://dx.doi.org/10.1364/AO.22.003725.

4. Razenkov, I. A., E. W. Eloranta, J. P. Hedrick, R. E. Holz, R. E. Kuehn and J. P. Garcia, 2002: A High Spectral Resolution Lidar Designed for Unattended Operation in the Arctic, 21st International Laser Radar Conference}, July 8-12, 2002, Quebec, Canada.

5. Razenkov, I. A., E. W. Eloranta, J. P. Hedrick and J. P. Garcia, 2008: The Design of a New Airborne High Spectral Resolution Lidar, 24th International Laser Radar Conference, June 23-27, 2008, Boulder, CO, USA.

6. Hair, J. W., C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Isquierdo and F. E. Hovis, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. 2, Applied Optics, 47, pp. 6734-6752, doi: http://dx.doi.org/10.1364/AO.47.006734.

7. Esselborn, M., M. Wirth, A. Fix, M. Tesche, and G. Ehret, 2008: Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients., Applied Optics, 47, pp. 346-358, doi: http://dx.doi.org/10.1364/AO.47.000346.

8. Piironen, P ., and E. W . Eloranta, 1994: Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter. Optics Letters, 19, pp. 234-236, doi: http://dx.doi.org/10.1364/OL.19.000234.

9. Eloranta, E. W. and I. A. Razenkov, 2006: Frequency locking to the center of a 532 nm iodine absorption line by using stimulated Brillouin scattering from a single- mode fiber., Optics Letters, 31, L22809, doi:10.1029/2007GL031008, doi: http://dx.doi.org/10.1364/OL.31.000598.

10. Shupe, M. D., 2007: A ground-based multi-sensor cloud phase classifier, GRL, 34, pp. 25-30.

11. Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov and J. Straka 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements., Bull. Amer. Meteor. Soc, 80, pp. 381- 388, doi: http://dx.doi.org/10.1175/1520-0477(1999)080%3C0381:CMRUSB%3E2.0.CO;2.

12. Hayman, M., J. P. Thayer 2012: General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices. J. Opt. Soc. Am. A, 29, pp. 400-409, doi: http://dx.doi.org/10.1364/JOSAA.29.000400.

13. Kaul, B. V., I. V. Samokhvalov and S. N. Volkov 2004: Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar, Appl. Opt., 43, pp. 6620-6628, doi: http://dx.doi.org/10.1364/AO.43.006620.

14. Hayman, M., S. Spuler, B. Morley and J. Van Andle 2012: Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers, Opt. Express, 20, pp. 29553-29567, doi: https://doi.org/10.1364/OE.20.029553.

15. Hayman, M., S. Spuler and B. Morley 2014: Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain, Opt. Express, 22, pp. 16976-16990, doi: https://doi.org/10.1364/OE.20.029553.