

Mobile Phased Array Weather Radars

Developments from the ARRC at the University of Oklahoma

Robert D. Palmer, Ph.D., IEEE Fellow, AMS Fellow

Executive Director, Advanced Radar Research Center Associate Vice President for Research & Partnerships Tommy C. Craighead Chair & Professor, School of Meteorology Adjunct Professor, School of Electrical and Computer Engineering Scientific Fellow, National Severe Storms Laboratory, NOAA

ARRC Technology Roadmap

Horus Phased Array Radar

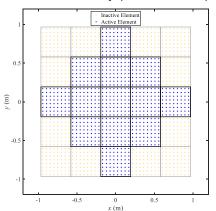
S-Band, Fully Digital Polarimetric PAR Demonstrator

SPECIFICATIONS OF THE FULLY DIGITAL HORUS RADAR

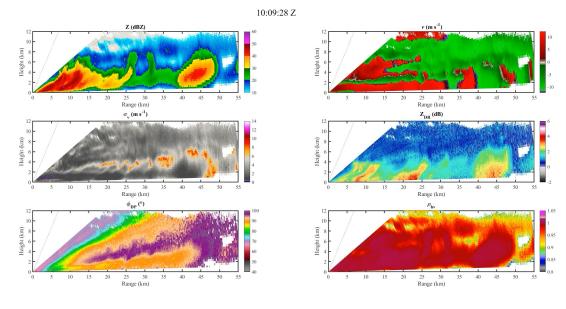
Operating Frequency 2.7-3.1 GHz Element Polarization ATSR/STSR/RHCP/LHCP Tx Waveform Type AWG/LFM/NLFM Tx Peak Power (single element) 10 W/polarization Max Tx Pulse Width $100 \mu s$ @ 10% duty cycle Max Tx Bandwidth 100 MHz Element Spacing $0.5 \lambda @ 2.951 \text{ GHz}$ Max Number of Panels 25 (1600 dual-pol elements) Max Electronic Scan Angle $\pm 45^{\circ}$ az, $\pm 45^{\circ}$ el 360° az, -1-92° el Mechanical Positioner $2.03 \times 2.03 \text{ m}^2$ Aperture Size Tx/Rx Beamwidth Broadside 2.58° (no taper) Total SNR Losses Tx/Rx 6.01/9.81 dB Sensitivity (1 pulse) 4.3 dBZ @ 50 km

Designed to be scalable, upgradable, maintainable and real-time operation

Palmer et al., Horus – A Fully Digital Polarimetric Phased Array Radar for Next-Generation Weather Observations, IEEE Transactions on Radar Systems, vol. 1, pp. 96-117, doi: 10.1109/TRS.2023.3280033, 2023.


Horus Weather Measurements

13-Panel Testing of Horus Scalability

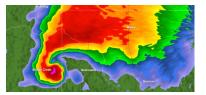

8 August 2023

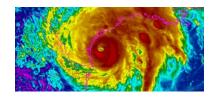
13-Panel Array (832 Channels)

8 August 2023

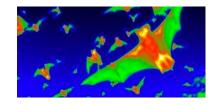
- RHI scans (0.5-32°, 0.5° steps) were collected from convective storms
- 30-μs LFM waveform (10 m range resolution/10-m range sampling)
- PRT of 1 ms, 128 pulses/beam, 8-sec/RHI
- With 13 panels (832 dual-pol channels), sensitivity ~12 dBZ at 50 km

Polarimetric Atmospheric Imaging Radar (PAIR)




C-Band, Mobile, Polarimetric Imaging PAR

- Mobile, C-band, Polarimetric Imaging radar
- Digital beamforming and e-scan in el for ultra-high update time (360°x20° in 6-10 s)
- E-scan pencil or spoiled beam in el
- High sensitivity (-2.9 dBZ @ 10 km)
- Data will be available via ARRC's radarhub



Take-Away Points

- Science dictates and the community has voiced the need for polarimetric phased array technology
- The all-digital **Horus** PAR (S-band) is **operational** the ARRC continues to make promising measurements and add new modes on the fully digital Horus radar
- The scalable design of the Horus digital phased array radar allows the creation of the larger-aperture systems
- The imaging PAIR (C-band) will be operational in 2024

