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Tornadogenesis

purely baroclinic process
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observed case: vortex lines passing
through low-level vorticity maximum
form arches
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WEAKLY TORNADIC

1 June 1999 (Coleman, OK)
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19 May 1998 (Sidney, NE) 24 May 1998 (Medicine Lodge, KS)
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A problem of perfect balance? We need just the right amount of
baroclinity? Too little and we have insufficient baroclinic

generation of vorticity? Too much and we cannot contract the cold
air?
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lTornado maintenance:
updraft relative position
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What role, if any, do 3.0
secondary gust fronts play in
tornado genesis and/or
maintenance? What are the
thermodynamic fields around
them?
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secondary) Gust fronts
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6 June 2001
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Measurements Needed

Wind and thermodynamic data covering storm to
tornado scale

Traditional analyses as well as data assimilation
will likely be used to combine fields

Expect to assess RFD trajectories and forcings
as a function of time and space and compare
with nontornadic storms

Only tornadic case so far is 5 June 2009

Good nontornadic cases for comparison include
7/ June and 9 June 2009



Storm-environment and storm-storm interactions
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What controls the final outcome
when storms merge?

Requires:

Wind and thermodynamic data
before and after merger; ideally
this would be available for both
storms prior to merger

Possible Case:
11 and 13 June 2009

1 May 2008

storm-storm
Interactions
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Data assimilation using radar and
mesonet data to evaluate modeled

cold pools

* Use mesonet data to evaluate cold pools
produced by different microphysics
schemes

* Assess the impact of the data assimilation
of mesonet observations within the cold
POO|

* Could be done using almost any of the
cases



