SCIENTIFIC RESEARCH PLANS AND OBJECTIVES: PRIORITY OF CASES DATASETS REQUIRED

Howie "Cb" Bluestein
School of Meteorology
University of Oklahoma, Norman
hblue@ou.edu

LEVELS OF COLLABORATION:

1.MINIMUM: PhD./M. S. WORK FOR STUDENT SOLELY AND IS FIRST AUTHOR;

POSSIBLE CO-AUTHORS – ADVISOR, COMMITTEE MEMBERS, OPERATORS AND/OR SUPPLIERS OF INSTRUMENT.

- 2. IN BETWEEN: STUDENT WORK IS PART OF LARGER, OVERALL STUDY; CO-AUTHORS AS IN 1, WITH STUDENT BEFORE OTHERS ON STUDENT'S COMMITTEE.
- 3. MAXIMUM: WORK IS SMALL PART OF WORK

 DONE BY SOMEONE ELSE; POSSIBLE CO-AUTHORS

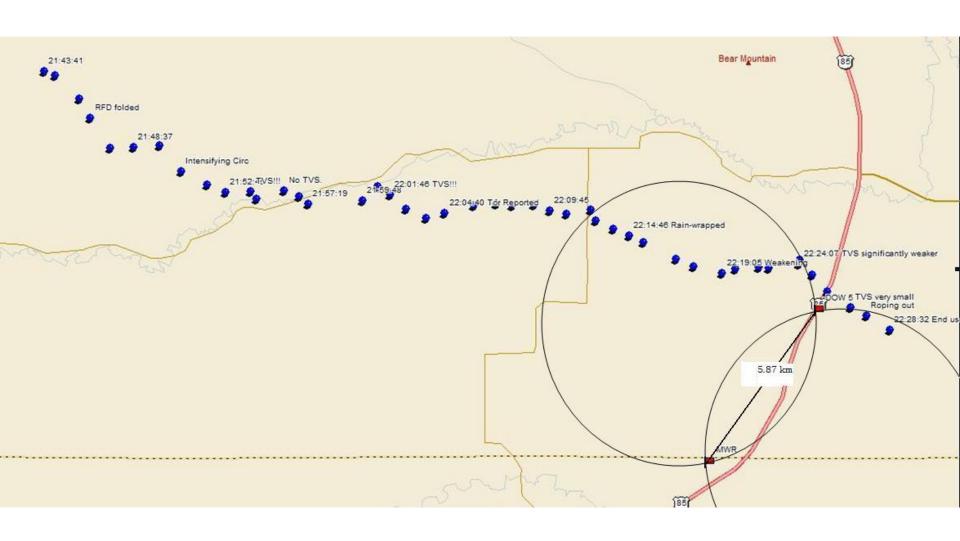
 AS IN 1, BUT LESS LIKELY ADVISOR OR STUDENT'S

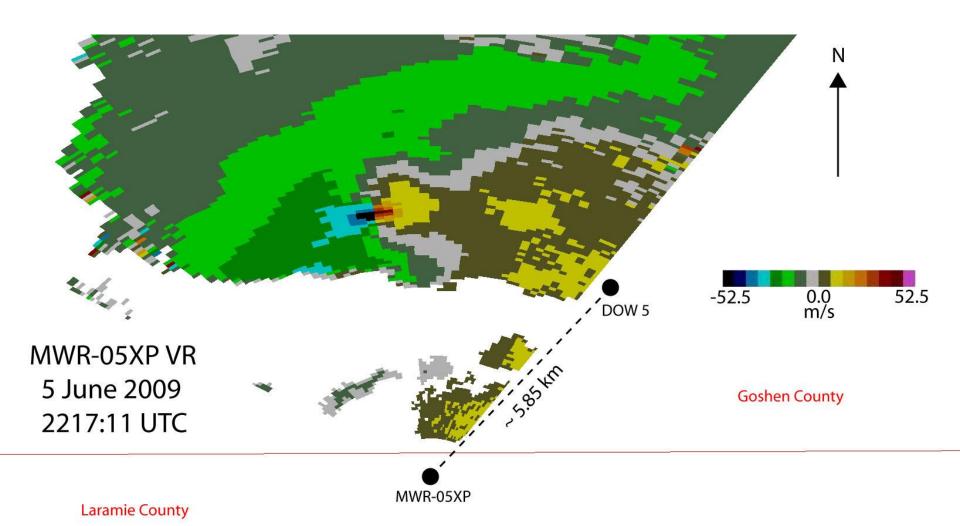
 COMMITTEE IS/ARE CO-AUTHORS

		Date (2009)	X-Pol	X-Pol W-band MWR-05XP		Description
		8 May	X	X	X	Test; supercell in S Cen OK
		12 May	X	NA	X	gust front, multicell in TX Panhandle
		13 May	X	NA	X	HP supercell in Cen OK
		15 May	X	X	X	squall line in N Cen OK
		19 May	X	X	X	multicell, microbursts in NE
		20 May	X	X	X	supercell in NE
		22 May	X	X	NA	multicells in NE and SD
		23 May	X	X	X	multicell line in NE
		25 May	X	NA	X	strong multicell in W OK
	\longrightarrow	26 May	X	NA	X	multicell, supercell with anticyclone,
						gust front, in N Cen TX
		29 May	X	X-	X	multicell in NE
		31 May	X	X-	X	multicell in IA
		1 June	NA	X-	X	multicells in NE
		4 June	X	X-	X	supercell/multicell line in WY
1	→	5 June	X	X-	X	complete life cycle of tornado in
•						supercell, in WY; supercell in W NE
		6 June	X	X-	X	supercells in NE
	\longrightarrow	7 June	X	X-	X	supercell, very large hail, in NW MO
	\longrightarrow	9 June	X	X-	X	supercell in SW KS
		10 June	X	X-	X	multicells in SW KS/SE CO
	\longrightarrow	11 June	NA	NA	X	HP supercell in SE CO
		13 June	X	X-	X	supercell in TX Panhandle
		14 June	NA	NA	NA	supercell in TX Panhandle

1. SINGLE DOPPLER ANALYSIS OF TORNADIC SUPERCELL ON 5 JUNE 2009 USING MWR-05XP DATA; POSSIBLE USE OF RAPID-DOW DATA

MIKE FRENCH (WITH OTHER MWR-05XP DATA FROM 2008)


- OBJECTIVES: WHERE VORTEX BEGINS AND HOW IT IS ADVECTED/PROPAGATES UPWARD OR DOWNWARD
- NULL CASES ON 5 (LATE), 6, 7, 9, AND 11 JUNE


- 2. DUAL-RAPID-DOPPLER ANALYSIS WITH DATA FROM MWR-05XP AND RAPID-DOW: JANA HOUSER WILL DO ANALYSIS
- RAPID-DOW DATA PROVIDED BY JOSH/CSWR

OBJECTIVE: FIRST, MORE TECHNIQUE THAN SCIENCE

- CAN IT BE DONE?
- DIFFERENCES IN SCAN STRATEGIES
- DIFFERENCES IN INSTRUMENT RESOLUTION
- HELP PLAN FUTURE EXPERIMENTS

GBVTD ANALYSIS WITH WEN-CHAU LEE; TILT W/HEIGHT PROBLEMS?

3. POLARIMETRIC ANALYSIS OF DATA FROM ALL SUPERCELLS: UMASS-X-POL (AND NOXP?); JEFF SNYDER, ESPEC. 5 (AND LATE), 7 JUNE WHEN THERE WAS LARGE HAIL; 6, 9 JUNE; POSSIBLE DUAL-DOPPLER ANALYSIS, ON 7 JUNE

POLARIMETRIC VARIABLES AND THEIR EVOLUTION

AND TORNADOGENESIS; PHYSICAL MEANING OF

• NEED DSD MEASUREMENTS (KATJA, GLEN)

OBJECTIVES: RELATIONSHIP BETWEEN

- SNYDER ET AL.(2010, *J. ATMOS. OCEAN. TECH.*)
- ATTENUATION CORRECTION SCHEMES AND HYDROMETEOR CLASSIFICATION SCHEME, T > 0° C

4. DUAL-DOPPLER ANALYSIS OF DEMISE OF SUPERCELL ON 9 JUNE 2009; UMASS X-POL, NOXP, AND MWR-05XP

OBJECTIVES: "MODE OF DISSIPATION: DOWNSCALE TRANSITION" (BLUESTEIN 2008, MWR)?

- MAY BE DONE BY STUDENT ELSEWHERE
- NEED SFC THERMODYNAMIC DATA.

- 4. DUAL-DOPPLER ANALYSIS OF 5 JUNE 2009 TORNADIC SUPERCELL: COLLABORATORS DOWs, NOXP, MWR-05XP
- ANALYSES PROBABLY NOT DONE BY STUDENTS AT OU UNLESS DATA FROM MWR-05XP ARE INVOLVED; BLUESTEIN IS INTERESTED IN COLLABORATING EVEN WHEN ANALYSES ARE DONE ELSEWHERE
- OBJECTIVES: UNDERSTANDING OF TORNADO-GENESIS AND ROLE OF RFD, VORTICITY BUDGET
- ALSO NEED SFC THERMODYNAMIC DATA

- 5. ANTICYCLONIC HOOK ON 26 MAY 2009 DUAL-DOPPLER ANALYSES USING DATA FROM UMASS X-POL,NOXP, DOWs
- OBJECTIVES: DEVELOPMENT OF ANTICYCLONIC VORTICES ALOFT AND AT SFC
- MAY BE DONE BY STUDENT ELSEWHERE

6. GUST FRONT ON 26 MAY 2009

SINGLE-DOPPLER ANALYSIS USING MWR-05XP DATA

OTHER STUDENT?

• SHORT-TIME SCALE BEHAVIOR OF GUST FRONT

- 7. ANALYSIS OF REFLECTIVITY AND WIND AT TOP OF STORM USING MWR-05XP; WITH SATELLITE PEOPLE (MARTIN SETVAK, DANIEL LINDSEY JANA HOUSER OR OTHER STUDENT
- OBJECTIVES: HOW ARE PENETRATING/ COLLAPSING UPDRAFTS RELATED TO TORNADOGENESIS, IF AT ALL
- NOT TOO MANY CASES IN WHICH STORM TOP WAS SAMPLED BY MWR-05XP

8. EnKF EXPERIMENTS WITH RAPID-SCAN DATA, ESPECIALLY ON 5 JUNE 2009 (TO 20° EVERY 6 – 7 s)

ROBIN TANAMACHI (POST DOC?), DAVID DOWELL, LOU WICKER, ANOTHER STUDENT?

- OBJECTIVES: STUDY STORM DYNAMICS USING RETRIEVED VARIABLES SUCH AS THERMODYNAMIC AND VERTICAL VELOCITY
- Enkf experiments with other rapid-scan datasets