Mobile soundings in VORTEX2

Matt Parker (North Carolina State U.)
 with
 George Bryan (NCAR)

acknowledgments:
David Dowell (NCAR), Morris Weisman (NCAR), Conrad Ziegler (NSSL)

VORTEX2 Planning Meeting
23-24 February 2009

Instrument description

- 2 MGAUS units from NCAR/EOL + 1 helium supply vehicle

137 sondes* allocated for ' 09

- 2 MGAUS-equivalent sounding units from NOAA/NSSL 130 sondes* allocated for ' 09
- 1 comparable unit from SUNY-Oswego (Scott Steiger) on-station for 2 weeks (25 May-9 June)
~20 sondes* allocated for '09
- basic specs:
nominal ascent $\sim 4 \mathrm{~m} / \mathrm{s}$
launch interval $\sim 40-60$ min while stationary
can receive data on the move (but winds may suffer)
can transmit data once sounding is complete
- staffing of MGAUS trucks: M. Parker and G. Bryan (coord. vehicle)
+ 2 EOL technicians + 5 NCSU students
= 2 people/vehicle + a "hot spare"

Science objectives

- pre-storm environment and mesoscale heterogeneity:
$>$ refinement of V2 forecast/target (+ SPC/other centers)
> NWP, storm simulation, and data assimilation projects
$>$ baseline for study of environment modification by storms
- storm-environment interactions:
$>$ pre-existing mesoscale boundaries and interactions
$>$ storm-scale baroclinity and horizontal vorticity generation (forward flank and anvil shading boundaries)
$>$ near-storm lapse rates, evolution in time and space, cause/effect assoc. with tornadic vs. non-tornadic storms
$>$ upshear environment and relationship to RFD properties
$>$ evolution of PBL structure and lid in afternoon/evening

Deployment strategies

pre-storm environmental soundings

a) uncertain/diffuse/distant target: we travel/stay with V2 armada, and launch 1 balloon periodically as able
b) well-defined \& nearby target: simultaneous 4-vehicle launch coordinated with $18 Z$ or $21 Z$ NWS/ARM soundings:

MGAUS: Pre-Storm Environment

Very slow-moving storms

MGAUS: Slow-Moving Storm

Given the necessary set-up/tear-down time, forward-flank launches are only possible in very slowly-moving storms.

moderate or fast-moving storms (default setup)

MGAUS: Fast-Moving Storms

Calculations and discussion with prior MGAUS staffers suggest it won't be practical to keep repositioning the vehicles. By staying put, we can launch more frequently and thus capture a greater number of storm-relative positions. The parallelogram can be morphed into a 'T' or 'L' when desired.

Remaining issues to be worked out:

- What is the best use of the ~ 20 supplemental SUNY-Oswego soundings?
- Is it important to have a surface observing station at the launch point for QC purposes? Is a conventionally available portable surface station (e.g. like a WXT510 or a "Sticknet" sensor) suitable for this purpose?
- Helium re-supply logistics
- Launch procedures in high wind or heavy precipitation
- Unique communications demands as we will be too far away/apart to use VHF radio or the MDN

Extra slides

variant: faster-moving storms near pre-existing boundaries

IMGAUS: Fast-Moving Storms, Boundary

This variation on the default setup will be attempted when a targeted storm approaches a well-defined pre-existing boundary.

