Radar Coordination and Missions in VORTEX2
Three study scales: Storm, Mesocyclone, Tornado
Ten radars: SR1, SR2, DOW6, DOW7, NOXP, UMASSX, Rapid-Scan DOW, TTA-K, CIRPAS, UMASSW

Three generic operations modes for mesocyclone scale:

1. Continuous dual-Doppler
2. Continuous dual-Polarization
3. Fast moving / difficult storms

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W-E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Storm is moving $10 \mathrm{~m} / \mathrm{s}(20 \mathrm{mph})(30 \mathrm{~km} / \mathrm{h})$ Idealized W -E road parallel motion.

Fast Storm Mode: Set up a 25 km grid/net
Fast is $>13-15 \mathrm{~m} / \mathrm{s}$, depending on roads, angle of motion, etc.

Central OK Operations

Normal operations for slow storms
Consider anchoring to PAR for fast storms
Operations in Coordination with UAS
Normal operations. Bias towards UAS COA region if possible
Non Tornadic Weather
Consider operations on non-tornado days for Cl
Consider post tornado operations in bow, squall, etc.
Intercomparisons
Target same non-tornadic storm with same scans, colocated, W,K,X,C intercomparison
Operations in Cl on tornadic days
Consider early deployment for CI , keeping slower radars far to the east
Switching to tornado scans from DP or DD modes
If DD possible betweeen X-X or X-K in tornado: yes
If tornado crossing town: yes
If surface array is deployed in tornado: maybe
If only single Doppler and no surface array: no
HP Storms
Cyclic Storms
Consider expanding mesocyclone radar baselines
Continuous Dual-Doppler mode prefered
Mergers
 pods to obtain of tornado and

