Surface In Situ Microphysical Measurements

Katja Friedrich CU-Boulder Glen Romine UI-Urbana Terry Schuur OU/CIMMS/NSSL Jerry Straka OU-Norman

Instrumentation

4 laser disdrometers (fixed) 2 vehicle mounted @ 2 m AGL 2 unmanned deployable @ 1.1 m AGL size range 0.3-25 mm sensor area 54 cm² (Horiz.) sample freq. 30-60 s mean velocity per size bin 0.2-21 m s⁻¹

2 2DP video particle probes (mobile) mounted on 2 separate vehicles 30 km/hr flow needed across sensor size range 0.2-6.4 mm particle data avg over 30-60 s ~ 3 m AGL (Vert.)

Friedrich, Romine, Schuur and Straka – VORTEX2 Planning Meeting 2/23/09

Limitations

- 2DP probes
 - small sensor area need large instrument relative wind speeds for reasonable sample volumes (30 km/hr)
- Laser disdrometers
 - About half the sensor area of video disdrometers
 - Quality affected by wind speed, orientation relative to wind direction, turbulence, splashing from nearby surfaces, 'margin fallers' and vibration
 - Unknown hail exposure survival (larger than golfball)
- Optimal sampling is in conjunction with polarimetric radar coverage:
 - Radar and disdrometer samples are not co-located and have different time-space resolution

Science Objectives

- Particle size distributions
 - Physical process measurements
 - (e.g. evaporation rate within hook appendage precipitation, drag, centrifuging)
 - Microphysical parameterizations
 - Intra and inter storm DSD shape variability
 - Understanding multi-scale interactions between microphysical and kinematic processes and their relevance for tornadogenesis
- Water content
 - Buoyancy calculations
 - *Radar attenuation, polarimetric measurement ground truth (with caveats)

Deployment strategies

- Coordinated with polarimetric radar measurement windows for more complete microphysical mapping
- Prefer to embed within Sticknet array and mobile mesonets when practical to supplement buoyancy measurements

Fast Moving Storm

Focus ~ centerline to right flank – 2DP exits south along hook axis Friedrich, Romine, Schuur and Straka – VORTEX2 Planning Meeting 2/23/09

Slow Moving Storm

Concentration toward right rear, 2DP probes focus on E-W transects through hook (data collection while westbound)

Friedrich, Romine, Schuur and Straka – VORTEX2 Planning Meeting 2/23/09

Information needs

- (1) Status, location and scanning sector of polarimetric radars
- (2) Feedback on locations of significant circulations (radar) and large hail (mobile mesonet, Sticknet deployment crews?)
- (3) Locations of high density Sticknet deployments (embed when practical)