

VORTEX-2 FIELD CATALOG AND DATA ARCHIVE

Steve Williams, Greg Stossmeister, Scot Loehrer and Linda Cully

Computing, Data, and Software Facility (CDS)

NCAR Earth Observing Laboratory

Boulder, Colorado

VORTEX-2 Planning Meeting

Boulder, CO

23-24 February 2009

EOL DATA SERVICES

- Data Questionnaire
- Data Management Plans
- Real-time Data Ingest
- Field Operations Catalog and Mapserver
- Data Processing
- Interactive Data Archive and Distribution (EMDAC)
- Web Services and Mailing Lists
- Special Media Products and Services

EOL FIELD CATALOG TOOL

http://catalog.eol.ucar.edu/

In-field tool to ingest and display operational and preliminary research products and project documentation for making real-time decisions and evaluating project progress

Features:

- Daily Mission Reports
- Operations Summary
- Facility Status Reports
- Data Analysis Products
- Authoring Tools
- Web-based access

Available Model Products for 2006/03/15 UTC

<u>Previous Date(UTC)</u> Choose Date(UTC)
 <u>Next Date(UTC)</u>

Forecast			15 N	Iar	2006				16	Ma	r 20	06		17	Ma	r 20	06	18	Ma	r 20	06	19	Ma	r 20	06	20 I	Iar	2006	
Times(UTC)	03	06	09	12	15	18	21	00	03	06	09	12	18	00	06	12	18	00	06	12	18	00	06	12	18	00	06	12	2
FLEXPART - Analys	is a	nd F	orec	ast	rom	200	6/03	/15	12:0	0 U	TC																		
300_MC_COt_Height					003 2 e	00 6k r	009 2 x	012ha	01.9hr	018 hr	021 hr	024hr	030 be	03 6kr	042hr	048ba	054hr	060 1 x	066 2 a	072ta	078 b e	084 1 x	090£#	09 6hr	102kr	108hr	114hr	120kr	22
500_MC_COt_Height					003 b a	00 6 kr	009 h r	012ha	01.Shr	018hr	021 h r	024hr	030br	036kr	042hr	048ba	054hr	060kr	066 2 a	072ea	078kr	084 h r	090ba	096hr	102kr	108hr	114hr	120hr	22
700_MC_COt_Height					003hr	0061	009kr	012ha	01.Sra	018kr	021hr	024hr	030kr	036kr	042hr	048hr	054hr	060kr	066ba	072ra	078kr	084 h r	090ba	096hr	102kr	108hr	114hr	120hr	22
Total_Column_CO					003hr	006kr	009kr	012hr	01.Sr	018hr	021hr	024hr	030kr	036hr	04.2hr	048ba	054hr	060kr	066 a r	072ha	078ke	084hr	090ba	096hr	102kr	108br	114hr	120kr	22
FLEXPART - Analys	is a	nd F	orec	ast	rom	200	6/03	/15	06:0	O U	TC																		
300_MC_COt_Height			003 h r	00@a	009£#	012kr	01.Skr	0180a	021hr	024kr		030£r	03 6kr	042hr	048ba	0.54hr	06Chr	06 G a	072ba	078 2 a	084br	090kr	096ka	102hr	108kr	114hr	120hr		22
500_MC_COt_Height			003 h r	006hr	009hr	012kr	01.5kr	018ha	021hr	024kr		030hr	036hr	042hr	048hr	0.54hr	060kr	066kr	072ha	078ha	084hr	090kr	096hr	102hr	108kr	114hr	120hr		22
700_MC_COt_Height			003hr	006hr	009hr	012kr	01.5kr	0189a	021hr	024kr		030hr	036kr	042hr	048hr	0.54hr	060hr	066kr	072hr	078hr	084hr	090kr	096hr	102hr	108kr	114hr	120hr		22
Total_Column_CO			003hr	00@a	009hr	012hr	01.Nr	0189a	021hr	024br		030ea	03 6kr	042hr	048hr	0.54hr	060hr	066 h r	072br	078ba	084hr	090hr	09@a	102hr	108kr	114hr	120hr		22
FLEXPART - Analys	is a	nd F	orec	ast	rom	200	6/03	/15	00:0	0 U	TC																		
300_MC_COt_Height	003hr	00 6k r	009hr	012hr	01.Shr	018 br	021 hr	024hr	1	030 b r		036hr	042hr	048hr	054hr	060br	06 6hr	072 h r	078 b a	084hr	090br	096kr	102hr	108hr	114hr	120br			22
500_MC_COt_Height	003hr	006kr	009hr	012hr	01.5hr	018hr	021hr	024hr		030kr		036hr	042hr	048kr	0.54hr	060hr	066hr	072kr	078hr	084hr	090kr	096kr	102hr	108hr	1141	120hr			20
700_MC_COt_Height	003hr	006ke	009hr	012hr	01.Sta	018hr	021hr	024hr		030kr		036hr	042hr	048kr	054hr	060ba	066hr	072kr	078hr	084hr	090kr	096kr	102hr	108hr	114hr	120hr			20
Total Column CO	003hr	0061	009hr	012hr	01.Str	018hr	021 h r	024hr		030 br		036hr	042hr	048hr	054hr	060ba	06 Ge r	072hr	078 2 a	084hr	090be	096kr	102ba	1088#	114hr	120br			22

Forecast	15	Ma	r 20	06	16	Ma	r 20	06	17 1	/Iar	2006	18 Mai	2006	
Times(UTC)	00	06	12	18	00	06	12	18	00	06	12	00	12	2
GFS - Analysis and For	ecas	t fro	m 20	006/	03/1	5 12	:00	UTC	:					
000_MSLP_500_Heights			000kr	oocke	012kr	018hr	024hr	030hr	036hr	042hr	04Shr	060br	072hr	-
000_MSLP_Winds			000kr	0061	012hr	018hr	024hr	030hr	03 6a r	042kr	048kr	060br	072hr	22
000_Precip_6h			000kr	006kr	012kr	018hr	024hr		03@a	042hr	048hr	060br	072hr	.00
000_Precipitable_Water			000kr	0061	012hr	018hr	024hr	030hr	03 6b a	042kr	048kr	060br		22
000_Temperature			000kr	006kr	012hr	018hr	024hr	030hr	03@a	042hr	048hr	060kr	072hr	
500_Heights_Winds			000kr	006hr	012hr	018hr	024hr	030hr	036ba	042kr	048kr	060br	072hr	20
700_Heights_Winds			000kr	ooche	012br	018hr	024hr	030hr	03@r	042hr	048hr	060kr	072hr	32
850_Heights_Winds			000kr	006kr	012kr	018hr	024hr	030hr	036hr	042kr	048hr	060br	072hr	.22
GFS - Analysis and For	ecas	t fro	m 20	006/	03/1	5 00	:00	UTC	:					
000_MSLP_500_Heights	0006	0061	012kr	018hr	024hr	030hr	036hr	042hr	048hr		060kr	072hr		32
000_MSLP_Winds	oothe	0066	0128	018kr	024hr	030 hr	036kr	042hr	048hr		060br	072ke		22
000_Precip_6h	00084	0068	012kr	018kr	024kr		036kr	042hr	048hr		060hr	072kr		900 9400
000_Precipitable_Water	ooter	0061	012kr	018kr	024hr	030 hr	036kr	042hr	048hr		060br			29
000_Temperature	00084	0068	012kr	018kr	024kr	030kr	036hr	042hr	048hr		060hr	072kr		90 180
500_Heights_Winds	ooter	0061	012kr	018kr	024br	030 h r	036kr	042hr	048br		060er	072er		28
700_Heights_Winds	00084	0068	0128	018kr	024kr	030kr	036hr	042hr	048hr		060hr	0722		
850_Heights_Winds	ooter	00612	012hr	018br	024br	030hr	036kr	042hr	048br		060br	072kr		22
Forecast	00	06	12	18	00	06	12	18	00	06	12	00	12	
Times(UTC)	15	Ma	r 20	06	16	Ma	r 20	06	17 N	Iar	2006	18 Mai	2006	

Field Documentation

Operations Summary

Instrument / Facility Status

Forecast Briefing

Mission Summary

Scientist Summary

Date(UTC)	CSU Forecast Discussion	GBOS Mission Summary	MIPS summary	NOAA P-3 mission summary	NRL P-3 mission summary	SPC Forecast Discussion	WRF Forecast Discussion	aircraft alert	facilities status summary	learjet mission summary	ops plan of the day	science director summary	weather NOWCAST	weather summary
2003/06/30	<u>13:00</u>			<u>00:47</u>		<u>15:28</u>			<u>18:09</u>		<u>20:07</u>		00:42 02:05 03:15 20:45	<u>21:06</u>
2003/06/29	<u>13:00</u>			<u>01:48</u>	00:15		<u>17:06</u>		<u>21:36</u>	<u>18:37</u>	21:25	<u>00:30</u> <u>18:00</u>	00:21 01:22 03:45 04:55 06:12 07:50 08:07 15:17 20:17 23:25	21:33
2003/06/28	<u>13:00</u>	<u>18:00</u>					<u>17:12</u>	<u>21:37</u>		с	<u>20:18</u>		<u>21:06</u>	<u>21:53</u>
2003/06/27	<u>13:00</u>					<u>16:57</u>		<u>21:02</u>	<u>18:25</u>		<u>18:34</u>			<u>19:55</u>
2003/06/26	<u>13:00</u>					<u>16:13</u>			<u>19:18</u>		<u>17:54</u>		00:33 01:05 01:54 03:15 03:24	<u>21:06</u>
2003/06/25	<u>13:00</u>	<u>13:00</u>		21:45	21:12	<u>15:19</u>	<u>20:43</u>		<u>20:28</u>	<u>23:06</u>	<u>18:12</u>	<u>21:00</u>	00:47 20:01 22:04	<u>18:47</u>
2003/06/24	<u>13:00</u>			<u>02:41</u>	02:49	<u>15:46</u>	22:53	<u>18:53</u>	<u>19:10</u>	02:29	21:14	00:00	00:57 02:14 03:38 04:53 06:20 07:44 21:02 21:58 23:05	22:25
2003/06/23	<u>13:00</u>	<u>16:30</u>	<u>23:59</u>	<u>01:19</u>	00:21	<u>16:54</u>	<u>22:18</u>		<u>20:44</u>	01:00	<u>20:10</u>	00:25	00:43 02:40 03:19 05:14 06:24 23:02	21:56
2003/06/22	13:00	<u>23:00</u>	23:59	00:45	00:15		<u>22:19</u>	20:25	<u>16:20</u>	00:55	<u>19:48</u>	00:30	00:45 02:05 03:48 05:12 20:54 22:58	<u>22:06</u>

BAMEX Facilities Status Summary Report

Date of report(UTC): 2003/05/27 16:00 Author of report: Brigitte Baeuerle Submitted at(UTC): 2003/05/27 16:01

OVERVIEW:

FACILITY/PROJECT STATUS

= up; = provisional; down ; = n	o report	
1. NRL P-3 (Remaining flight hrs: 130.6)	Comment:	APU broken
a. ELDORA Radar	Comment:	
<mark>b.</mark> Radar Mosaic Display	Comment:	
C. Navigation, State Parameters	Comment:	
d. Data System	Comment:	
e. Sat. Communications	Comment:	WSI/Iridium interference
2. NOAA P-3 (Remaining flight hrs: 131.7)	Comment:	
a. Lower Fuselage Radar	Comment:	
b. Doppler Radar	Comment:	
c. Navigation, State Parameters	Comment:	
d. Data System	Comment:	
e. Sat. Communications	Comment:	
3 WMI Learjet (Remaining flight hrs: 88.7)	Comment:	
a. Dropsondes	Comment:	
b. Data System	Comment:	
©. Sat. Communications	Comment:	
4 GBOS	Comment:	
a. Mobile Probe	Comment:	
b. NCAR MGLASS	Comment:	
C. UAH MIPS	Comment:	

Mission Scientist Report, RICO, RF15 January 16th, 2005 C130Q Flight Scientist/Observer: Stevens/Ochs

Figure 1: Images showing cloud field during flight.

General cloud characteristics: The clouds sampled during the line segment of the flight were initially thought to be in the outflow of a region of more organized, deeper convection. Our targets consisted of several convective cells which grew substantially during the period of flight operations, eventually reaching depths of 15000'. Based on the radar imagery (Fig. 3), the "line" might be better interpreted as the stronger, eastern, flank of meso-cell of approximately 60 km in diameter. Later we sampled another ring, or rings of growing convection with tops nearer 6000 ft, sampling many rainshafts, and convective cells at a variety of levels, these were more apparently annular while flying. Both the deeper cells sampled early and the later cells sampled late were not unlike other forms of convection encountered during RICO. Cloud droplet concentrations during the flight were low, typically around 100 cm⁻³ or a bit less. The latter cells provided many opportunities to work rainshafts near the radar, thus providing calibration for Z - R relationships during RICO.

RICO Operations Plan of the Day Form	
For use by authorized users only please.	
Date of report(UTC): year: 2005 🕶 month: 02 🕶 day: 05 🕶 hour: 22 💌 min: 03 💌	
Author of report: Jim Moore Password:	
Preserve the format of the text being entered below?: no	
OPERATIONS SUMMARY:	
SCIENTIFIC OBJECTIVE(S):	
MISSION PLANS:	FOI
PRIMARY MISSION:	Deployment Development Data Services

Browse by Date:

◉ utc ○ cdt

~

BOM

		Mar		02			-		In	. 10	02					Inly	- 10	02		
-		IVIA	y 20				~		Jun	e 20	05	-				J ULY T	120		-	-
Su	IVIO	Tu	We	Th	Fr	Sa	Su	IVIO	Tu	We	Th	Fr	Sa	Su	IVIO	Tu	We	Th	Fr	Sa
				1	2	3	1	2	3	4	2	6	1			1	2	3	4	5
4	5	6	2	8	2	<u>10</u>	8	2	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	6	2	8	2	<u>10</u>	<u>11</u>	12
11	12	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	17	15	16	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>	<u>21</u>	13	14	<u>15</u>	<u>16</u>	17	<u>18</u>	<u>19</u>
18	19	<u>20</u>	21	22	<u>23</u>	24	22	23	24	25	26	27	<u>28</u>	20	21	22	23	24	<u>25</u>	26
25	26	27	28	29	30	31	29	30						27	28	29	30	31		
1		-	-	-	-	-		-	-	_	_		-	-	_	-	-	-	-	-

Browse by Operational Products:

JOES	CAPE 🔽 Latest	💌 Star	Date 💌 End Date 💌 Get Data	
oes-12	2km_ch1_vis	✓ Latest	💙 Start Date 💙 End Date	e 💌 Get 🛛
oaa-12	01km_ch1_vis	✓ Latest	Start Date 🔽 End Date 💙	Get Data
oaa-14	01km_ch1_vis	✓ Latest	V Start Date V End Date V	Get Data
oaa-15	01km_ch1_vis	✓ Latest	V Start Date V End Date V	Get Data
oaa-16	01km_ch1_vis	✓ Latest	V Start Date V End Date V	Get Data
oaa-17	01km_ch1_vis	✓ Latest	V Start Date V End Date V	Get Data
ace Produc	ets			
RM_SMOS	sfc 💌 Latest	💌 Start D	te 💌 End Date 🔽 Get Data	

Operational Products Display

Satellite

Surface

Profilers

Upper-Air Soundings

Radar Products

Composite Products

Interactive Maps

							Sai	elli	te I	roi	luci	ts ^r													
Product											18	Ju	1 20	03											
Times(UTC)	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Ne o
COFS (CIMSS Derived Produ	l •		eru:	ME	SDI	C D	eriu	ed P	rodu	et l	•	ervì		•	•		•	•		•	•	•	•	•	•
CAPE	0000	0100	0200	0300	0400	0.500	0600	0700	0800	0000	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200		
	0000	0100	0200	0200	0400	0.500	0600	0700	0000	0000	1000	1100	1200	1200	1400	1500	1600	1700	1000	1000	2000	2100	2200	2200	00
	0000	0100	0200	0300	0400	0.500	0600	0700	0000	0900	1000	1100	1200	1300	1400	1500	1600	1700	1900	1900	2000	2100	2200	2300	9.9
TOPE 12 (NECDIC COEC Sou	- dia	(0100	0200	0500	0400	0500	0000	0700	0000	0500	1000	1100	1200	1500	1400	1500	1000	1700	1000	1300	2000	2100	2200	2000	HED
goes-12 (NESDIS GOES SU	Incari	<u>gs</u>)					_				1000			1200		1500	1609			1000		2100	2200		
2km_ch1_vis	0008 0039 0055	0125 0139 0155	0209 0225 0239	0309	2					0955	1025 1039 1055	1109 1125 1139	1209 1239 1253	1325 1339 1355	1409 1425 1439	1525 1539 1555	1625 1639 1655	1709 1725 1739	1809 1839 1855	1925 1939 1955	2009 2025 2039	2125 2139 2155	2225 2239 2255	2309 2325 2339	*
conus_4km_ch1_vis	0008 0039 0055	0109 0125 0139 0155	0209 0225 0239	0309 0325 0339 0355	0409 0425 0439 0455	0509				0909 0925 0939 0955	1009 1025 1039 1055	1109 1125 1139	1209 1239 1253	1309 1325 1339 1355	1409 1425 1439	1509 1525 1539 1555	1609 1625 1639 1655	1709 1725 1739	1809 1839 1855	1909 1925 1939 1955	2009 2025 2039	2109 2125 2139 2155	2209 2225 2239 2255	2309 2325 2339	얉
conus_4km_ch2_near-IR	0008 0039 0055	0109 0125 0139 0155	0209 0225 0239	0309 0325 0339 0355	0409 0425 0439 0455	0509 0525 0539	0609 0625 0639 0655	0709 0725 0739 0755	0809 0825 0839	0909 0925 0939 0955	1009 1025 1039 1055	1109 1125 1139	1209 1239 1253	1309 1325 1339 1355	1409 1425 1439	1509 1525 1539 1555	1609 1625 1639 1655	1709 1725 1739	1809 1839 1855	1909 1925 1939 1955	2009 2025 2039	2109 2125 2139 2155	2209 2225 2239 2255	2309 2325 2339	2
conus_4km_ch3_water_vapor	0008 0039 0055	0109 0125 0139 0155	0209 0225 0239	0309 0325 0339 0355	0409 0425 0439 0455	0509 0525 0539	0609 0625 0639 0655	0709 0725 0739 0755	0809 0825 0839	0909 0925 0939 0955	1009 1025 1039 1055	1109 1125 1139	1209 1239 1253	1309 1325 1339 1355	1409 1425 1439	1509 1525 1539 1555	1609 1625 1639 1655	1709 1725 1739	1809 1839 1855	1909 1925 1939 1955	2009 2025 2039	2109 2125 2139 2155	2209 2225 2239 2255	2309 2325 2339	22
conus_4km_ch4_thermal-IR	0008 0039 0055	0109 0125 0139 0155	0209 0225 0239	0309 0325 0339 0355	0409 0425 0439 0455	0509 0525 0539	0609 0625 0639 0655	0709 0725 0739 0755	0809 0825 0839	0909 0925 0939 0955	1009 1025 1039 1055	1109 1125 1139	1209 1239 1253	1309 1325 1339 1355	1409 1425 1439	1509 1525 1539 1555	1609 1625 1639 1655	1709 1725 1739	1809 1839 1855	1909 1925 1939 1955	2009 2025 2039	2109 2125 2139 2155	2209 2225 2239 2255	2309 2325 2339	22
conus_4km_ch6_thermal-IR	0008 0039 0055	0109 0125 0139 0155	0209 0225 0239	0309 0325 0339 0355	0409 0425 0439 0455	0509 0525 0539	0609 0625 0639 0655	0709 0725 0739 0755	0809 0825 0839	0909 0925 0939 0955	1009 1025 1039 1055	1109 1125 1139	1209 1239 1253	1309 1325 1339 1355	1409 1425 1439	1509 1525 1539 1555	1609 1625 1639 1655	1709 1725 1739	1809 1839 1855	1909 1925 1939 1955	2009 2025 2039	2109 2125 2139 2155	2209 2225 2239 2255	2309 2325 2339	22
noaa-12																									
01km_ch1_vis											1013	1154										2132		2313	22
01km_ch2_near-IR											1013	1154										2132		2313	22
01km_ch3_near-IR											1013	1154										2132		2313	얉
01km_ch4_thermal-IR											1013	1154										2132		2313	22
noaa-14																									
01km_ch1_vis												1153												2317	22
01km_ch2_near-IR												1153												2317	22
01km_ch3_near-IR												1153												2317	22
01km_ch4_thermal-IR												1153												2317	22
noaa-15																									
01km_ch1_vis	0050											1122		1300	1441								2241		22
01km_ch2_near-IR	0050											1122		1300	1441								2241		22

Forecast								18	Ju	n 20	03															19 .	Jun	200	3						20 Jun 2	003	
Times(UTC)	00	01 02	03 0	4 05	06	07	08 09	9 10	11	12	13	14 15	5 16	17	18	19	20	21	22	23 00	0 01	02	03	6 04	05	06 0	07 0	08 0	9 10	11	12	15	18	21	00		
WRF_10kn	n - A	nalysi	s and	Fore	cas	t firo	m 20	03/0	6/18	3 00	:00	UTC	(N	CAF	νM1	MM	Re	al-tu	me l	MM5)	Ì		-		0 0												
0-3km_shear	r 00hr		03hr		06hr	•	091	α		12hr		1.5	u I		18hr			21kr		241	a		27h	r		0hr		3	3hr 🛛		36hr						22
300mb	00hr		03hr		06hr		091	u .		12hr		1.5	u		18hr			21hr		241	a		27h	r		Ohr		3	shr		36hr						22
500mb	00hr		03hr		06hr		091	α		12hr		1.51	u		18hr			21hr		241	a		27h	r		Ohr		3	šhr		36hr						-
700mb	00hr		03hr		06hr		091	α		12hr		15	u		18hr			21hr		241	a		27h	r		Ohr		3	šhr		36hr						22
850mb	00hr		03hr		06hr		091	a		12hr		1.5	u		18hr			21hr		241	a		27h	r		30hr		3	šhr		36hr						22
CAPE	00hr		03hr		06hr		091	a		12hr		15	u		18hr			21hr	81	241	a		27h	r		Ohr		3	šhr		36hr						22
CIN	00hr		03hr		06hr		091	α		12hr		15	u		18hr			21hr		241	æ		27h	r		30hr		33	šhr		36hr						22
precip	00hr		03hr		06hr		091	α		12hr		15	u		18hr			21hr		241	a		27h	r		30hr		3	šhr		36hr						22
reflectivity	00hr		03hr		06hr	•	091	α		12hr		15	u		18hr			21hr		241	a		27h	r		30hr		3	šha		36hr						22
sfc_dew	00hr		03hr		06hr		091	α		12hr		1.5	u		18hr			21hr		241	æ		27h	r		30hr		33	šhr		36hr						22
sfc_temp	00hr		03hr		06hr		091	α		12hr		1.51	u		18hr			21hr		241	a		27h	r		30hr		3	šhr		36hr						22
WRF_10kn	n - A	nalysi	s and	Fore	cas	t fi o	m 20	03/0	6/18	3 12	:00	UTC	(<u>N</u>	CAF	VMI	MM	Re	al-tù	me l	MM5)	1		_			- 92-										- 92	
0-3km_shear	r									00hr		031	u		06hr		1	09hr		12	a		1.5h	r		lShr		2	llar		24hr	27hr	30hr	33hr	36hr		22
300mb										00hr		031	u		06hr			09hr	2	12	a		1.5h	r		lShr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
500mb										00hr		031	u		06hr			09hr		12	æ		1.5h	r		lShr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
700mb										00hr		031	u		06hr			09hr		12	a		1.5h	r		lShr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
850mb										00hr		031	u		06hr		19	09hr		12	a		1.5h	r		lShr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
CAPE										00hr		031	u		06hr			09hr		12	a		1.5h	r		l8hr		2	llar		24hr	27hr -	30hr	33hr	36hr		22
CIN										00hr		031	u	1	06hr		-	09hr		12	a		1.5h	r		lShr		2	llar		24hr	27hr	30hr	33hr	36hr		22
precip										00hr		031	π		06hr			09hr		12	α		1.5h	r		l8hr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
reflectivity										00hr		031	u		06hr			09hr		12	æ		1.5h	r		lShr		2	llar		24hr	27hr	30hr	33hr	36hr		**
sfc_dew										00hr		031	u		06hr			09hr		12	æ		1.5h	r		l8hr		2	lhr		24hr	27hr	30hr	33hr	36hr		22
sfc_temp										00hr		031	u		06hr			09hr		12	a		1.5h	r		l8hr		2	llar		24hr	27hr	30hr	33hr	36hr		22
WRF_4km	- An	alysis	and F	rorec	ast	fron	n 200	3/06	/18	00:0	00 U	JTC	(NC	AR/	MM	IM I	Real	l-tim	ie M	<u>M5</u>)																	
0-3km_shear	r 00hr	01hr 02hr	03hr 04	hr 0.5hr	06hr	07hr	08hr 09h	a 10ha	11hr	12hr :	13hr	4hr 1.5	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 241	a 2.5k	r 26hr	27h	r 28hr	29hr 3	30hr 3	lhr 3	2hr 33	šhr 34h	a 3.5ha	r 36hr						22
300mb	00hr	0 1hr 02hr	03hr 04	lhr O.Shr	06hr	07hr	08hr 09h	a 10ha	11hr	12hr :	13hr	4hr 1.5	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 241	a 2.5k	r 26hr	27h	r 28hr	29hr	30hr 3	lhr 3:	2hr 31	šhr 34h	a 3.Sha	r 36hr						20
500mb	00hr	01hr 02hr	03hr 04	har O.Sha	06hr	07hr	08hr 09h	a 10ha	11hr	12hr :	13hr	4hr 15	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 241	a 25k	r 26hr	27h	r 28hr	29hr :	30hr 3	lhr 3:	2hr 3:	šhr 34h	a 3.5ha	r 36hr						22
700mb	00hr	0 lhr 02hr	03hr 04	hr O.Shr	06hr	07hr	08hr 09h	a 10ha	11hr	12hr :	13hr	4hr 1.5	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 24ł	a 25k	r 26hr	27h	r 28hr	29hr :	30hr 3	lhr 3:	2hr 33	šhr 34h	a 3.Sta	r 36hr						22
850mb	00hr	01hr 02hr	03hr 04	hr O.Shr	06hr	07hr	08hr 09h	a 10ha	111/1	12hr	13hr	4hr 151	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 241	a 2.5k	r 26hr	27h	r 28hr	29hr 1	30hr 3	lhr 3:	2hr 33	ška 34k	a 3.5ha	r 36hr						22
CAPE	00hr	0 1hr 02hr	03hr 04	lhr 0.5hr	06hr	07hr	08hr 09h	a 10ha	11hr	12hr	13hr	4hr 151	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 241	a 2.5k	a 26ha	27h	r 28hr	29hr	30hr 3	1hr 3:	2hr 33	šhr 34h	a 3.5ha	r 36hr						22
CIN	00hr	0 lhr 02hr	03hr 04	the O.She	06hr	07hr	08hr 09h	a 10ha	1lhr	12hr :	13hr	4hr 1.5	u 16h	r 17h	18hr	19hr	20hr	21hr	22hr	23hr 24k	a 2.52	r 26hr	27h	r 28hr	29hr 3	30hr 3	lhr 3	2hr 33	šhr 34h	a 3.5ha	r 36hr						22
nrecin	000	011-021-	071-04	ur O.Sur	0.00	07-	001-001	- 101-	111-	120-	171-1	1- 19	- 16	170	101-	100-	201-	211-	271-	221-242	- 29	- 20-	270	- 202-	hour	mar 2	11/2	200 2	2- 242	200	264	ŕ	Ē			i	

WRF Forecast Products

Browse by Research Products:

Aircraft Products

Aircraft	chat_log_P3 💌 Latest	💙 Start Date 💙 End Date 💙 Get Data
NOAA_P-3	Chief_Sci_Event-Radar_Log 💌 I	Latest 💙 Start Date 💙 End Date 💙 Get Data
NRL_P-3	ALT_ATX_DPXC 💌 Latest	Start Date 💌 End Date 🔽 Get Data
WMI_Lear_Jet	QC_SkewT 💽 Latest	Start Date 💌 End Date 💌 Get Data
MIPS Products		
MIPS	915snr 🔽 Latest	🗸 Start Date 🔽 End Date 🔽 Get Data
Surface Produc	ts	
none found		
Upper Air Prod	lucts	
mobile_GLASS1	SkewT 💌 Latest	💙 Start Date 🔽 End Date 🔽 Get Data
mobile_GLASS2	SkewT 💌 Latest	Start Date Start Date Get Data
mobile_GLASS3	SkewT 💌 Latest	🗸 Start Date 🔽 End Date 🔽 Get Data

BO M

BOM

Date	Mission	Begin (UTC)	End (UTC)	Location/Mission Map	Catalog Products	Facilities	Notes
20 May	<u>Sounding</u> Intercomparison	1950	2152	Carlyle Lake, IL	Operational <u>Research</u> <u>Model</u>	WMI Learjet GBOS	A comparison between MIPS, dropsondes and MGLASS in essentially clear air. Two GLASS soundings were launched. The Lear did 3 drops
22 May	<u>Aircraft</u> Intercomparison	2000	2200	Southern Illinois	Operational <u>Research</u> <u>Model</u>	NOAA P-3 <u>NRL P-3</u> WMI Learjet	The intercomparison involved a set of pre-determined maneuvers roughly 15 min. northeast of MAA. These lasted for about 1 hour. The planes then broke formation to do testing of individual components of each aircraft. No clouds were available to test microphysical probes.
23 May	GBOS 1 MCS	1600	2200	Enid, OK	Operational <u>Research</u> <u>Model</u>	<u>GBOS</u>	Forecast was for MCS to develop in western KS and move through western OK. Later observations indicated conditions were less favorable for an MCS in the region until much later that night. The mission was called off.
24-25 May	<u>IOP 1</u> Mature MCV	1300	0130	<u>Northern Arkansas</u>	<u>Operational</u> <u>Research</u> <u>Model</u>	<u>NOAA P-3</u> <u>NRL P-3</u> WMI Learjet GBOS	Rationale for mission plan: early t/o based on expectation that nocturnal system would form and persist into daytime, retriggering severe convection in the early afternoon. Convection did not develop on the Red River until early evening, and never organized into a well-defined MCS within the BAMEX domain. The target remained the MCV throughout the mission. The MCV grew out of nocturnal convection in Nebraska and Kansas, forming from a series of line end vortices that "pooled" into a broader MCV over northeastern Oklahoma.
28-29 May	IOP 2 Bow Echo/MCS	1400	0130	<u>Central Illinois</u>	<u>Operational</u> <u>Research</u> <u>Model</u>	<u>NOAA P-3</u> <u>NRL P-3</u> WMI Learjet GBOS	There were two modes of organized convection. The first was a bow-shaped MCS forming in southern Wisconsin on the cyclonic shear side of a strong jet at 500 mb. This system moved south-southeastward and produced damaging winds near Chicago. A second system over Illinois began as a supercell storm around 1900 UTC, produced a tornado and some large hail. The system was embedded within much stronger vertical shear than the Chicago MCS. Precipitation fell on the downshear side, leading to a perception of a "leading stratiform" region. The system organized further but did not become a bow echo.
30-31 May	IOP 3 Supercell MCS	2300	0700	Eastern Illinois/Indiana	Operational <u>Research</u> <u>Model</u>	<u>NOAA P-3</u> <u>NRL P-3</u> WMI Learjet GBOS	Line of supercells developed ahead of strong cold front in southern Wisconsin and moved into northern/central Illinois and Indiana in an environment of strong shear and marginal CAPE. The line never developed a trailing stratiform region, rather there was a stratiform region ahead of the line of supercells.
2-3 June	<u>IOP 4</u> <u>MCV/MCS</u> <u>mini-bow</u>	1320	0130	Northwest MO (MCV) Eastern AR and Northern MS (MCS)	<u>Operational</u> <u>Research</u> <u>Model</u>	WMI Learjet (MCV) NOAA P-3 (MCS) NRL P-3 (MCS) WMI Learjet (MCS) GBOS (MCS)	The first part of IOP4 focused on the dynamics of a remnant MCV over northwest MO. The second part of the IOP focused on the upscale growth process of an MCS over AR and the rapid appearance of small-scale (30 km) bowed segments within the line.
5-6 June	IOP 5 MCV	1700	0400	<u>Northeast TX</u>	Operational <u>Research</u> <u>Model</u>	NOAA P-3 WMI Learjet GBOS	IOP5 was centered around an apparent remnant MCV from an overnight convective system in Texas, and the possibility of retriggering by that MCV during the afternoon and evening hours.
7.0	CROCA				Operational		MGLASS1 northeast of Seymour, TX; MIPS east of Haskell, TX; and MGLASS2 in Anson, TX. Data

Catalog Tools

Report Generation Forms

(password needed to submit)

 Upload documents and images (password needed to submit)

Project Information

- Arica LAN information
- Group Photo
- VOCALS educational short talks (page 3)
- VOCALS All-Hands Science Meeting

Contact Information

- <u>Arica Operations Center Staff</u>
- VOCALS (Arica) Participants Listing
- VOCALS-Field (Arica) Mail List

Catalog Information

<u>Catalog User Guide</u>

Chat Information

- X-Chat instant access
- <u>Chat Room Guidelines</u>
- <u>Chat Client Configuration Instructions</u>
- Primer-Everything you need to know about CHAT

Additional Data Sources

- VOCALS Data Archive Master List
- FLEXPART Interactive Model from NOAA ESRL
- Oregon State VOCALS Satellite Products
- PMEL website for Ron Brown Underway data
- VOCALS-Rex Peru Website with Jose Olaya information
- MODIS subset for VOCALS
- HRDL Lidar Data from VOCALS
- DoE-G1 Data
- Unisys Weather
- Ron Brown Data Perusal (NCSU)

Geospatial data

Download (Save As...) KML first then open in e.g. GoogleEarth

- Real-Time VOCALS kml
- Ops center kml- use this from the VOCALS operations center network
- GOES-10 georeferences: 1km images (ch1_vis, ch2_irs, ch3_water_vapor, ch4_2_diff, ch4_thermal-IR): Northern: -9.245, Southern: -30.791, Western: -101.187, Eastern: -68.777
 4km image (ch1_vis_big) Northern: -14.036, Southern: -26.631,
 - Western: -85.577, Eastern: -67.586
- R/V Ron Brown kml for last 12 hours

http://catalog.eol.ucar.edu/trex/

- Reports/Summaries (Status, Mission, and Operations) 340 documents and 1555 image files (0.26 GB)
- Research Platform Products (Aircraft, Surface, Lidar, Upper Air) 124,150 image files (8.01 GB)
- Operational Products (Satellite, Surface, Radar, Upper Air) 85,357 image files (7.81 GB)
- Model Output Imagery (Analysis and Forecast Fields) 143,252 image files (10.22 GB)
- TOTALS: 354,654 Files (26.30 GB)

EOL DATA MANAGEMENT

EOL Data System (EMDAC)

Primary means for all project scientists and researchers to browse and retrieve data from any EOL-supported projects

Features:

- Long-term field project data archival and distribution
- Interactive data browsing, subsetting, and format translation
- Web-based access
- Value-added datasets
- Data documentation

"Composite" Data Sets at NCAR/EOL

A composite dataset is a collection (over some time period and region) of similar data (e.g. surface meteorological) from a variety of sources, put into a common format, and passed through a uniform quality control.

Why does NCAR/EOL develop composites?

- Provides data in a uniform format with QC.
- Allows determination of network/site problems.
- Useful for model applications.
- Prevents duplication of effort.

Hourly Surface Meteorological Data Composite (2991 stations)

1-min sites (* 385) AWOS (+ 335) **RAWS (* 220)** MesoWest (+ 94) **HPCN (o 138) RWIS (+ 279) GPSMET** (o 153) CO CoAgMet (* 17) **FL FAWN (+ 5)** IA IEM (+ 88) IL ICN (o 19) IN PAAWS (* 7) KS GWMD5 (* 10) **MI MAWN (o 33) MO CAWS (* 21)** OH OARDC (o 11) **OK ARS Micro (o 42)** OK Mesonet (+ 119) **TX LCRA (o 102) TX TNRCC (+ 47)** West TX Meso (o 39) Texas ET (o 23) 15 Other Networks (o 804)

Other Radiosonde Sites
 Other Profiler Sites
 NOAA Profiler Network Sites
 NHS MicroART Radiosonde Sites
 NHS RRS Radiosonde Sites

RRS Sippican MarkIIA GPS sondes 1-sec vertical resolution TOP changeover in early Apr

MicroART VIZ B2 sonde with Radiotheodolite winds 6-sec vertical resolution DDC only by field phase

ARM (915MHz)

West TX Mesonet

(915 MHz)

Fort Sill

Radiosonde/Profiler Sites

ASOS/AWOS Networks

AHSS
 ASOS
 AHOS

MADIS - Various Mesonets
 MADIS - Personal Heather Station Networks
 MADIS - Non-Federal AMOS Network
 MADIS - RAMS Network
 MADIS - DOT Networks

Air Force Academy CAIC GLDNWS IEM LAIS (5 min) LANL MAWN MOComAgNet MQT-Meso OKMeso (15 min) UDFCD West TX Mesonet

APRSWXNET AnythingWX.com WXforyou.com

CODOT CO E470 IADOT INDOT KSDOT KYDOT MNDOT NDDOT NEDOR WIDOT WYDOT UPR GLOBE

GPSMET HADS SCAN CRN Non-Fed AWOS RAWS

MADIS Networks

Some Networks not in MADIS that may be of interest

High Plains Climate Network State Air Quality Networks South Dakota DOT RWIS Water Management District Networks (KS/CO) Additional ALERT networks (e.g. Overland Park, KS) ARS Micronet (SW OK) OKC Micronet Texas ET Networks COAgMet IA AgClimate Network

Hydrometeorological Networks in the United States

If you have updates or know of other networks please pass them along to loehrer at ucar dot edu

Click on state of interest

Back to GAPP Data Management Home Page.

Back to SGP/SMEX Data Management Home Page.

http://www.eol.ucar.edu/projects/hydrometnet/

PROJECT MASTER LISTS

👂 VOCALS Data Access - Moz	illa Firefox		
<u>ile E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookma	arks <u>T</u> ools <u>H</u> elp		
🌾 • 🗼 • 🧭 🔕 🏠 🚔	🚺 🕗 📈 🍠 🔊 🗃 📷 📑 💽 http://data.eol.ucar.edu/master_list/?p	project: 🔹 🕨 🚺	Google
🕷 CNN.com 🗋 Weather and Clima	ite F 🗱 UCAR/NCAR E-mail and 🗋 NOAA Locator (Public) 🗋 AT&T: Directory:	Direc 🗋 Syste	ms Support Online
🚰 Mail :: Inbox	S VOCALS Data Access		
	Land Based: Precipitation		
VOCALS	GPCP Global Daily 1-Degree Combination Data [NASA]	2003-06-03	Document
	GPCP Global Daily Merged Precipitation Analyses Imagery [NASA]	2003-06-03	Document
DATA BY CATEGORY	GPCP Global Monthly 1-Degree Combination Data [NASA]	2003-06-03	Document
<u>Aircraft</u> Hydrology	GPCP Global Monthly Merged Precipitation Analyses Climatology Data [NASA]	2003-06-03	Document
Land Based	GPCP Global Monthly Merged Precipitation Analyses Imagery [NASA]	2003-06-03	Document
• <u>Model</u>	GPCP Global Pentad (5-Day) Precipitation Analysis [NASA]	2003-06-03	<u>Document</u>
Oceanography Reder	NCEP/CPC Global CMAP Precipitation Analyses	2003-06-03	Document
Radiation	NCEP/CPC Global CMORPH Precipitation Analyses	2003-06-03	<u>Document</u>
• <u>Satellite</u>	PERSIANN 1°x1° Tropical Rainfall Data [NASA]	2003-06-03	<u>Document</u>
Ship Based	TRMM Real-time Rainfall Analyses (3-h) [NASA]	2003-06-03	
Upper Air			
Back to VOCALS	Model		
mail comments &	ECMWF Global Grids [NCAR/SCD]	2003-05-29	
uestions to <u>vebmaster@eol.ucar.edu</u>	EDC 30 Arc-Second Elevation Data [EDC]	2003-06-05	Document

ISSUES FOR DISCUSSION

- Need "buy-in" from all participants (e.g. adhere to data policy, populate field catalog, provide data/metadata to archive....)
- Agree on Radar data formats
- Identify Integrated Products
- Need for other Data Services (e.g. Mailing Lists, Web pages.....)
- Other items or needs?

http://survey.ucar.edu/opinio/s?s=3634

VOCALS Data Questionnaire
A VOCALS
The VOCALS Data Questionnaire is intended to collect information from the VOCALS PIs on their data requirements. This includes the requirements for real-time image products for the VOCALS Field Catalog and the data sets required for the Long-Term Data Archive to support your research. Please fill out the form as completely as possible.
The Field Catalog will be the repository for products and documentation during the field phase. All data and documentation coming from VOCALS will reside in the Long-Term Data Archive.
CONTACT INFORMATION
1. Name:
2. Affiliation:
3. Mailing Address:
4. E-mail:
5. Telephone:
6. Fax:
Next
Powered by <u>Opinio</u>

INFORMATION COLLECTED ON:

- Imagery and products needed for the field catalog (real-time ingest)
- Supporting Datasets needed for research
- PI Data to be submitted to the field catalog/archive
- Product transfer to aircraft
- Special products/reports/datasets needed

DATA CATEGORIES

Aircraft Satellite Land-based Radar/Lidar

Upper Air

Oceanographic

Model Output

Other

IHOP_2002 DATA MANAGEMENT PLAN OUTLINE

1.0 Introduction/Background

- 1.1 Scientific Objectives
- 1.2 Data Management Philosophy

2.0 Data Management Policy

- 2.1 Data Protocol 2.2 Data Processing/Quality Control
- 2.3 Data Availability
- 2.4 Data Attribution
- 2.5 Community Access to Data

3.0 Data Management Functional Strategy/Description

- 3.1 Data Archive and Analysis Centers
- 3.2 Investigator Requirements
 - 3.2.1 Data Format Conventions
 - 3.2.2 Data Submission Requirements
- 3.3 Data Collection Schedule
 - 3.3.1 On-line Field Catalog
- 3.4 Data Processing following the Field Phase
- 3.5 Data Integration
- 3.6 Data Archival and Long-term Access

4.0 IHOP_2002 Data Sets

- 4.1 Data Collection/Processing
- 4.2 Status Update Procedures
- 4.3 In-field Data Display and
 - Analysis Requirements
- 4.4 Coordination with other Programs
- 4.5 Advanced Water Vapor Sensor Intercomparison Data Set

APPENDICES

- A. Research Data Sets
- B. Operational Data Sets
- C. List of Acronyms (LOA)

T-REX Map Server

http://mapserver.eol.ucar.edu/trex/

<u>Background Layers</u> – DEM, orthophoto quads (aerial photo), USGS topo quads, roads, hydrography, federal lands, cities.

Points – All T-REX instruments are included using the lat/lon information provided in the documentation files.

Dropsondes – All T-REX dropsonde final reported locations are included.

Tracks – All aircraft flights and WOW excursions.

<u>IOP/EOP Maps</u> – Can generate maps specific to a particular IOP or EOP with the locations of all mobile platforms, aircraft/vehicle tracks, and dropsonde locations specific to that IOP or EOP.

<u>Surface Meteorological Composites</u> – Can generate maps of locations that were included within a particular composite data set including the operational data sources.

<u>Station Information</u> – Can click on a station to get additional information (station name, lat, lon, elev, etc).

PROJECT WEB PAGES

Project Description

Cumulus Photogrammetric, In-Situ and Doppler Observations (CuPIDO) is an observational program

designed to examine the onset and development of orographic thunderstorms associated with the North American Monsoon. The CuPIDO field program used digital visible spectrum cameras, surface mesonet stations, high temporal resolution soundings and aircraft data.

Data Access

Master List of All CuPIDO Data Sets CuPIDO Field Catalog Data Policy Dataset Documentation Guidelines Data Submission Instructions

Publications

Publications

Documents

Project Summary (PDF) Non-Technical Summary (PDF) Scientific Overview Document ISFF Site Survey (PDF) ISFF Site Survey (slideshow)

Meetings

CuPIDO Preparation Meeting (12 April 2006) CuPIDO Planning Workshop (11 April 2005)

People

CuPIDO Participants

CuPIDO Research Web Pages

Arizona State (Joe Zehnder) Wyoming (Bart Geerts) NCAR/EOL ISFF Wyoming King Air

CuPIDO Media and Animations

KSAZ-TV Monsoon Story (21 July 2006; 100Mb Quicktime) 26 July 2005 Thunderstorm (340Mb Quicktime) 26 July 2005 Microburst (350Mb Quicktime) 10 July 2004 (60Mb Quicktime) 13 July 2004 (33Mb Quicktime) 14 July 2004 (23Mb Quicktime) 16 July 2004 (27Mb Quicktime)

PROJECT AND WORKING GROUP MAILING LISTS

ACE-Asia Mailing Lists at UCAR/JOSS

Welcome!

Below is a listing of all the ACE-Asia mailing lists at UCARJOSS. Click on a list name to get more information about the list, view its archives (must be list member) or to subscribe, unsubscribe, and change the preferences on your subscription (requires password). (Send questions or comments to mailman-ownen@joss.ucar.edu.)

List aa-adnet aa-airmass-info aa-airmass-working aa-c130-inlet aa-casestudies aa-chemistry-carb aa-chemistry-inorganic aa-chemistry-mineral aa-collaboration aa-dust-comp aa-hygro-growth aa-kosan-all aa-kosan-pi aa-kosan-size aa-model aa-model-reg

Description

ADNet (LIDAR) Results of the Working Group on Air Mass Characterization Internal discussions of Working Group on Air Mass Characterization C-130 and Inlet/Plumbing Discussion Case Studies: Possibly the Perfect Dust Storm? Carbonaceaous Aerosols Inorganic Aerosols, Impactors and Intercomparison Mineral Aerosol and Trace Metals Future Collaboration among the Asian Participants Dust Composition and Radiative Effects Hygroscopic Growth Kosan and Surface Sites Kosan - PI List Kosan Size Distribution Modeling Working Group **Regional Model Comparisons**

RICO DATA POLICY SUMMARY

- All investigators must agree to promptly submit their data to the RICO archive
- All data shall be provided to other RICO Investigators
 upon request
- During the initial 1-year data analysis period, data may be provided to a third party <u>only</u> with the permission of the investigator(s) who collected the data
- All data will be considered public domain not more than 1-year following the end of the RICO field phase
- Any use of the data will, at a minimum, include acknowledgment. Co-authorship TBD with the investigator(s) who collected the data

RICO DATASET METADATA

TITLE: This should match the data set name AUTHOR(S):

Name(s) of PI and all co-PIs

Complete mailing address, telephone/facsimile Nos.,

E-mail address of PIs, and WWW address (if applicable)

Similar contact information for data questions (if different than above)

1.0 DATA SET OVERVIEW:

Introduction or abstract

Time period covered by the data

Physical location (including lat/lon/elev) of the measurement or platform

Data source if applicable (e.g. for operational data include agency)

Any World Wide Web address references (i.e. additional documentation such as Project WWW site)

2.0 INSTRUMENT DESCRIPTION:

Brief text (i.e. 1-2 paragraphs) describing the instrument with references Figures (or links), if applicable

Table of specifications (i.e. accuracy, precision, frequency, resolution, etc.)

3.0 DATA COLLECTION AND PROCESSING:

Description of data collection

Description of derived parameters and processing techniques used

Description of quality control procedures

Data intercomparisons, if applicable

4.0 DATA FORMAT:

Data file structure and file naming conventions (e.g. column delimited ASCII, NetCDF, GIF, JPEG, etc.)

Data format and layout (i.e. description of header/data records, sample records)

List of parameters with units, sampling intervals, frequency, range

Data version number and date

Description of flags, codes used in the data, and definitions (i.e. good, questionable, missing, estimated, etc.) **5.0 DATA REMARKS:**

PI's assessment of the data (i.e. disclaimers, instrument problems, quality issues, etc.)

Missing data periods

Software compatibility (i.e. list of existing software to view/manipulate the data)

6.0 REFERENCES:

List of documents cited in this data set description