Turbulence Measurements from CIRPAS Twin Otter in VOCALS-REx

Djamal Khelif, Jesus Ruiz-Planca University of California, Irvine dkhelif@uci.edu

New radome plumbing, effectively traps clouds (or rain) liquid water preventing it from obstructing the pressure xducers lines. Zero failure in POST and VOCALS-REx.

Status of Instruments Logged on UCI Data System

VOCALS-REx Oct16 - Nov13 2008 UTC Date		10/16	10/17	10/19	10/21	10/22	10/24	10/26	10/27	10/29	10/30	11/01	11/02	11/04	11/05	11/08	11/09	11/10	11/12	11/13	
Contact Scientist	Instrument	Fltight	т01	TO2	тоз	т04	TO5	т06	т07	то8	тоэ	TO10	T011	TO12	TO13	T014	TO15	TO16	T017	TO18	TO19
hjonsson@nps.edu	Rosemount Temperature	e																			
dkhelif@uci.edu	Rosemount Temperature	e (UCI)																			
dkhelif@uci.edu	LI-COR 7500 CO2 (UCI)																				
dkhelif@uci.edu	LI-COR 7500 Humidity (I	UCI)	xx			_	-	_		9								_			
hjonsson@nps.edu	Edge-Tech Dewpoint													ē							
dkhelif@uci.edu	Mod. Krypton Hygromete	er (UCI)																			
hjonsson@nps.edu	Radar Altimeter																				
hjonsson@nps.edu	Static Pressure																				
dkhelif@uci.edu	Radome Gust System (U	JCI) (x)																			
hjonsson@nps.edu	Heiman SST																				
<u>dkhelif@uci.edu</u>	Upward-looking IR Temp	. (UCI)																			
<u>dkhelif@uci.edu</u>	C-MIGITS (UCI)																				
Legend									_												
UCI	UCI and CIRPAS		Opera	ational		Som	e data		No	lata		(x)	Differer	nt proce	essing	(xx) C	Clipped	at 3.6 g	g/m^3		
		1000	200		1								1.12			-		500	1		

UCI 40-Hz MATLAB data available to Iquique Group

Name	Description	Units	Accuracy
t	elapsed Time in seconds since 0 UTC of flight (data file) start day	s	0.5 ms
ар	Pressured Altitude (adjusted to radar altitude)	m	1 m
lat	Latitude	deg N (decimal)	< 0.00002 deg
lon	Longitude	deg E (decimal)	< 0.00002 deg
hdg	true HeaDinG from UCI's C-MIGITS III range [0 360] deg	deg	0.3 deg
wx	Wind component in the east direction (X-axis)	m/s	0.4 m/s
wy	Wind component in the north direction (Y-axis)	m/s	0.4 ms
wz	Wind component in the vertical direction (Z-axis)	m/s	0.2 m/s
ah	Absolute Humidity from UCI's LI-COR 7500	g/m^3	?
ta	static Ambient Temperature from UCI's Rosemount fast-response sensor	^oC	0.4 ^oC
td	ambient Dewpoint Temperature from CIRPAS's Edgtech Chilled mirror	^oC	0.4 ^oC
ts	Sea surface Temperature from CIRPAS's downlooking Heiman KT 19.85 IR sensor	^oC	0.4 ^oC
ps	Static atmospheric Pressure from fuselage flush ports and Setra 270 transduce	hPa	5 Pa
tas	True Air Speed (Dry Air)	m/s	0.2 m/s
rhoa	Moist Air density	kg/m^3	?
mr	Mixing Ratio from UCI's LI-COR 7500	g/kg	?
thet	potential temperature (theta)	К	0.4 ^oC
tvir	VIRtual Temperature	^oC	0.4 ^oC
thete	Equivalent potential temperature (thetae)	к	0.4 ^oC
tirup	Temperature from UCI's IR UPward-looking temperature sensor	^oC	?
flip	FLIP-flop 1/2 Hz GPS synchronisation signal from 1-Hz CIRPAS C-MIGITS III pulse	V	?
tdl	Dewpoint Temperature from UCI's LI-COR 7500	^oC	0.3 ^oC

Data Policy

File Edit Format View Help

IMPORTANT NOTE TO USERS OF UCI DATA

- 1. P.I.s have ready access to the data produced by the other P.I.s.
- 2. The data is not available to the public for 1 year.
- 3. P.I.s can provide at any time copies of their probe'ssensor's data to whomever they chose.
- 4. Data from a P.I. may not be shared with others without the P.I.'s agreement.
- 5. Publications using another P.I.'s data give this other P.I. the option of being a co-author.

Please register as a UCI VOCALS-REx data user to be updated on future modifications to the data set and for possible cooperation in the data analysis and publication of results. To do so, please send a message with VOCALS-REX UCI data registration as the subject and your contactinstitution information in the message body to

Djamal Khelif University of California, Irvine Dept. Mech. & Aerospace Eng. Irvine, CA 92697-3975 USA e-mail dkhelif@uci.edu Phone 949 824 7437

Available Data on UCI server

http://wave.eng.uci.edu/files/vocals/datacuts/matlab_40Hz/

User name: otter

Password: [to get it, send me a request at: dkhelif@uci.edu]

40-Hz MATLAB data 1-Hz MATLAB data Will add ASCII version of the data (if required)

Latest online version is May 01, 2009 Newer version with KH20 hygrometer is ready (need to be put online)

http://wave.eng.uci.edu/files/vocals/flights_plots/ (no password needed) Description of Plots from UCI Data System on CIRPAS Twin Otter Physics Of Stratocumulus Top (POST) Jul 16 - Aug 15, 2008.

Page 1: Twin Otter 2-D Track with map overlay LON: C-MIGITS Aircraft Longitude [deg] LAT: C-MIGITS Aircraft Latitude [deg]

Page 2: Twin Otter 3-D Track with map overlay LON: UCI C-MIGITS Aircraft Longitude [deg] LAT: UCI C-MIGITS Aircraft Latitude [deg] PALT: Pressure Altitude (adjusted to radar akitude) [m]

Page 3: Continuity Check of 40-Hz GPS Time from UCI DAQ system Top panel: Samples: 40-Hz sample number 40-Hz GPS Time, [s] Bottom panel: Samples: 40-Hz sample number Delta (Time): Differential of 40-Hz GPS Time (Time(i+1)-Time(i)) [s]

Note: Pages 4-12 are Time series of grouped variables versus UTC [HH:MM]

Page 4: Twin Otter Attitude from UCI C-MIGITS LAT: Aircraft Latitude [deg] LON: Aircraft Longitude [deg] THETA: Aircraft Pitch [deg] PHI: Aircraft Roll [deg] PSI: Aircraft True Heading [deg]

Page 5: Twin Otter Velocities from UCI C-MIGITS. (Earth Reference Frame) Vx: Aircraft East Velocity [m/s] Vy: Aircraft North Velocity [m/s] Vz: Aircraft Vertical Velocity [m/s]

Page 6-8: Pressures from Radome and Fuselage PDAR: Differential Pressure of angle of Attack from Radome [mb] PDSR: Differential Pressure of angle of Sideslip from Radome [mb] PQR: Dynamic Pressure from Radome [mb] PQF: Dynamic Pressure from Fuselage (UCI Pitot) [mb] PTR: Total Pressure from Radome [mb] PSF: Static Pressure from Fuselage [mb] Page 9: Temperature Measurements TTR: CIRPAS Rosemount Recovery Temperature [C] TTR2: UCI Rosemount Recovery Temperature [C] TAD: Ambient Temperature from reference temperature (ttr or ttr2) [C] TIRKTD: Heiman KT Sea-surface IR Temperature [C]

Page 10: Humidity and CO2 Measurements DPET: EdgeTech chilled mirror dew point temperature [C] AHK: Campbell Sci. Krypton absolute humidity [V] AHL: L1-COR 7500 absolute humidity (before in situ calibration) [g/m^3] CO2L: L1-COR 7500 CO2 density [g/m^3] PALTC: Pressure Altidude (adjusted to radar altitude) [m]

Page 11: Temperature and TAS Measurements TAD: Ambient Temperature from reference temperature [C] DPET: EdgeTech chilled mirror dew point temperature [C] THETA: Potential Temperature [C (not customary K)] TIRKTD: Heiman KT Sea-surface IR Temperature [C] TASD: True Airspeed using dry air properties [m/s]

Page 12: Wind Measurements WSR: Wind Speed [m/s] WDR: Direction the wind is blowing from (meteorological convention) [deg] WXR: East Wind Component - Earth Ref. [m/s] WYR: North Wind Component - Earth Ref. [m/s] WZR: Vertical Wind Component - Aircraft Ref. [m/s] WLTR: Lateral Wind Component - Aircraft Ref. [m/s] WLTR: Lateral Wind Component - Aircraft Ref. [m/s] VZBS: Aircraft Vertical Velocity - Earth Ref. [m/s]

Wind Measurements

Figure from D.H. Lenschow and P. Spyers-Duran, NCAR/RAF Bulletin 23

$u = u_p - U_a D$

 $\times [\sin\psi\cos\theta + \tan\beta(\cos\psi\cos\phi + \sin\psi\sin\theta\sin\phi) + \tan\alpha(\sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi)] + \tan\alpha(\sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi)] - L(\dot{\theta}\sin\theta\sin\psi - \dot{\psi}\cos\psi\cos\theta)$ $v = v_p - U_a D$ $\times [\cos\psi\cos\theta - \tan\beta(\sin\psi\cos\phi - \cos\psi\sin\theta\sin\phi) + \tan\alpha(\cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi)] - L(\dot{\psi}\sin\psi\cos\theta + \dot{\theta}\cos\psi\sin\theta),$ $w = w_p - U_a D[\sin\theta - \tan\beta\cos\theta\sin\phi - \tan\alpha\cos\theta\cos\phi]$

 $+ L\dot{\theta}\cos\theta$

where u_p and v_p are the east and north aircraft velocity components, respectively; U_a is the true airspeed; α , β , θ , ϕ , and ψ are the aircraft attack, sideslip, pitch, roll, and true heading angles, respectively; L is the distance separating the INS and gust probe along the aircraft's center line; $D = (1 + \tan^2 \alpha + \tan^2 \beta)^{-1/2}$; and $\dot{\psi} = d\psi/dt$ and $\dot{\theta} = d\theta/dt$; w_p is the aircraft vertical velocity.

> Serial data from INS/GPS C-MIGITS III unit. Analog data (5-port radome gust system, P_s and T_r)

Analog-Serial Synchronization

Pitching Maneuvers: w Test

Rule of thumb: $\sigma_w/\sigma_{vz} < 10\%$ is acceptable

In Situ Humidity Calibrations

Older (Jan 9 2009) Humidity Calibrations

Flight Track on TO17 081110

Twin Otter - R/V Ron Brown Intercomparisons

Table: Details of CIRPAS Twin Otter overflights of Ronald H Brown. (UCI data set was used for this table.)											
Campaign Day, Date, Fight ID	Twin Otter run times (UTC)	Level run mean(z) or Sounding [z ₁ z ₂] ¹ (m)	Closest time, (UTC)	Closest Horiz. Distance (km)/ Track, °	Details						
Cd41 Nov 10 2008 1017	145231-150237	2154	145231	1.51/287	Above clouds west of RHB at point alpha						
	150356-151802	[2139 34]	151631	8.12/	Sounding ⊌ NW of RHB while turning (61-1605 deg)						
	151825-152328	31	152050	0.58/224	Surface fluxes run SW-bound above RHB						
	152334-152953	[26 1094]	152334	8.64/	Sounding ⊅ SW of RHB during U-turn (220-40 deg)						
	153037-153648	1069	153321	0.97/46	Cloud-base run NE-bound above RHB						
	153857-154556	1107	154252	1.23/230	In-cloud run SW-bound above RHB						
	154823-155428	1110	155109	0.14/54	Reciprocal in-cloud run NE-bound above RHB						
	155723-160607	[1286 33]	160238	0.10/234	Sounding א SW-bound above RHB						
	160919-161915	32	161241	0.15/93	Inbound surface fluxes run above RHB						
	162115-162644	32	162644	0.96/285	Outbound surface fluxes run east of RHB						
	162738-163026	30	162738	1.67/171	Southbound surface fluxes run south of RHB						
	163028-163501	[29 755]	163351	0.35/346	Sounding 겨 above RHB while turning (166-349 deg)						
	163635-164606	757	163719	0.42/111	Inbound Run below cloud base above RHB						
1017	165034-165435	1071	165435	1.36/290	Reciprocal run at cloud base towards RHB						
	165525-165750	1071	165525	1.78/178	Southbound cloud-base run south of RHB						
	165956-170509	1070	170228	0.07/3	Northbound cloud-base run south above RHB						
	170736-171337	1071	171034	0.38/186	Southbound cloud-base run south above RHB						
	171510-172510	[1283 27]	171833	0.26/355	Sounding א northbound above RHB						
	172519-173233	34	173233	0.37/178	Southbound surface fluxes run north of RHB						
	173324-173808	36	173324	2.04/81	Inbound surface fluxes run east of RHB						
	174116-174637	37	174637	0.39/267	Outbound surface fluxes run east of RHB						
	174710-175218	35	174710	1.44/177	Southbound surface fluxes run south of RHB						
	175218-180140	[32 2177]	175218	16.7/97	Sounding 계 eastbound SE of RHB						

Note 1: z_1 and z_2 are respectively the initial and final elevations of each sounding.

Heat Flux

Heat Flux

Surface sensible Heat Flux

Summary

- High-quality meteorological and turbulence data set was obtained.
- The data are ready for project archive (will wait for feedback from users)
- Having redundant instruments always pays off (c.f., chilled mirror problems)

What Next?

- Provide flux estimates for all flights
- Intercomparisons results (need data from the R/V Ron Brown)
- Compare the structure of Sc topped MABL off Chile and off CA central coast using POST and CARMA data we collected with the Twin Otter recently

Ogive Method

Ogive = Cumulative Integral of Cospectrum of w' u' (or w' T', w' ρ'_v , ...) from high to low frequencies. Asymptote as f ->0 is the **flux estimate**.

$$\overline{w'u'} = \int_0^\infty Co(w',u')df$$

$$\mathcal{O}(f) = \int_{\infty}^{f} Co(w', u') df$$

Example of Wind Spectra and Fluxes

TO15 080813, WS = 13 m s^{-1}

Latent Heat

Latent Heat

Sensible Heat

Sensible Heat

N NA ANY