Doppler Lidar Measurements Made From the RV Brown

Alan Brewer, Sara Tucker, Ann Weickmann, Scott Sandberg, and Mike Hardesty

NOAA Earth System Research Laboratory Cooperative Institute for Research in Environmental Sciences (CIRES) Boulder, Colorado

Acknowledge:

Graham Feingold, Hailong Wang, Huiwen Xue, Sandra Yuter, Chris Fairall, Derek Coffman, Dave Covert

The NOAA/ESRL HRDL High Resolution Doppler Lidar

- 2 micron Coherent Doppler Lidar
 - Line of site wind speed
 - Aerosol backscatter sig strength
- 30 m / ½ second resolution
- 6-7 km typical range
- Motion stabilized scanning

Measurement Strategy : Two Paths

Resolvable features

 Spatial distribution and temporal evolution of aerosol and wind field (30m – 12km)

 Rapid acquisition to track spatial and temporal coherence (0.5 second – 10 minutes)

Averaged Quantities / Profiles

- Periodic scans to calculate average vertical profiles
- Longer acquisition for better statistics
- Continuous coverage

20 minute Scan Sequence : Average Profiles

20 minute Scan Sequence : Resolvable fields

Repeating 20 minute Scan Sequence

Wind Speed and Direction

Realtime processed results were uploaded to web every 20 minutes

http://esrl.noaa.gov/csd/lidar/vocals/latest.html

Signal Strength

Vertical Velocity Variance

HRDL RV Brown VOCALS 2008 - Vertical Velocity Variance au (m²/s²) 00.00 10/07/08 to 12:00 10/07/08

Wind Speed and Direction

Hours UTC Initial day # 281, 2008

Vertical Velocity Variance

HRDL RV Brown VOCALS 2008 - Vertical Velocity Variance au (m²/s²) 12:00 10/07/08 to 00:00 10/08/0

Example:

Combined measurements to investigate the dynamics of colliding outflows

- Doppler Lidar
 - Residual velocity
 - Aerosol Backscatter signal strength
- C-Band Radar
- W-Band Radar
- In-situ Aerosol Properties

Open Cell Convection 27 Oct 2008

Using LES models to study open cell convection

Important Factors :

- Dynamics
- Precipitation
- Aerosol distribution and properties
- Thermodynamic properties

Precipitation – black Surface divergence – blue Surface convergence - red

> Graham Feingold Hailong Wang Huiwen Xue

C-Band Radar – Precip Lidar – Residual wind (Hor) W-Band Radar – Precip Lidar – Residual wind (Vert)

Data Sta NIGAA ULS Nave NICA CEBCO

618 11

19°42'14.95" S 85°37'22.22" W

Eve alt 10181 ft

Convergence of 3 air masses

brw EI 1.0 ID 52.001-52.345 (m/s)

rcInt EI 1.0 ID 52.001-52.345 (dB)

Summary

- HRDL measurement overview / strategy
- Monitoring
 - Realtime Average Profiles
 - Post Processed Time Series
- Case driven observational studies
 - Combining data sets & models
 - Visualization
 - Sweep averaged quantities

Combining lidar and w-band radar vertical measurements

- Light drizzle conditions
- Radar : Large drops $(w + V_{drop})$
- Lidar: Small particles (w)
- Combine to determine V_{drop} (dBz)
- Lidar: clear air w / Radar: in cloud w

$V_{\rm drop}$ (dBz) as a function of height

Green: 20

Magenta: 50 Cyan: 55

Blue: 30 Black: 40 R:15,G:20,BLU:30,BLK:40,MAG:50,CYN:55

NOAA