Aerosol Effects on Cloud Microphysics in VOCALS: What pollutants participate in cloud formation in SEP, and how do they influence SCu albedo and precipitation?

Preliminary Results

Cynthia Twohy, Oregon State University AnnaRose Adams, Oregon State University Darin Toohey, University of Colorado Steve Howell, University of Hawaii Jim Anderson, Arizona State University Seattle Meeting, 7/13/2009

Counterflow Virtual Impactor (CVI)

- Collects droplets while rejecting interstitial aerosols & vapor
- Evaporates water so sample stream has non-volatile residual particles
- Change minimum size (cut size) of drops by changing counterflow rate

Which nuclei form droplets? Are they different from population? How do pollution aerosols participate?

6 5

Optical Diameter, nm

0

⁸ ⁹ 100

0

9 100

Optical Diameter, nm

8

6 7 8 9

Which Nuclei form Largest Drops?

Important for understanding drizzle formation, mixing process, chemical reactions

Condensational growth theory predicts that largest drops are formed from largest nuclei

R3 Outbound: Period with Low Microphysical Variability During Sampling

Changes in Residual Size Distribution with Drop Size

Smaller nuclei are progressively excluded as we exclude smaller droplets

Changes with Drop Size: R3 Inbound

Optical Diameter, nm

R4: Similar shift, but... inbound leg shows much larger mean sizes

R4 Outbound 250 7 μ **m** 250 18 µ m 200 · (200 · (cm)^d (200 · 150 · 100 · – 150 – (cm⁻³ – 100 – 100 – 50 · 50 -6 7 8 9 100 0 -7 8 9 8 2 6 8 9 100 Optical Diameter, nm Optical Diameter, nm

R4 Inbound: Much larger mean residual sizes than for outbound leg

R4: Why are Outbound and Inbound Legs so Different?

Additional pollution probably reason for larger residual sizes on inbound leg. Despite >2x more particles > 55 nm, only 30% more droplets inbound— Not all large pollution particles are activating in this case.

So, Size does matter. But, R2 does not seem to follow the pattern

A little mystery: In this case, largest drops have ~ equal proportions of large and small nuclei. Less hygroscopic particles? Inhomogeneous mixing? Need to combine with chemical data

R3 & 4, 20°S Overview: Increased aerosol clearly affects N_d

75 W

Droplet effective radius is typically ~30% smaller near shore

K3 & 4, 20'S OVERVIEW: LVVC (LVVP) NOT CONSTANT, GOES NOT TOILOW

Optical thickness $\tau^* \approx (3LWP)/(2\rho_w r_e)$

LWP changes may swamp droplet radius changes, which are smaller

Clean (R4) Size Distributions

Clean CVI residuals do not seem to show as much shift in size as polluted distributions. May be indicative of increased and different (inhomogeneous) mixing processes

Extra Stuff

R3 Inbound (t+6.5 hr) N_{drop}= 178 cm⁻³ LWC~ 0.29 g m⁻³ D_{drop} ~ 13.3 μm CN ~500-600 cm⁻³

R3 Inbound: Below Cloud Ambient vs. Droplet Residuals

