Aerosol chemical composition and source characterization during 2008 VOCALS REx

- Composition and distribution
- Sources
- Chemical relationships
- Mixing and transport

Y.-N. Lee, S. Springston, J. Wang, G. Senum,, L. Kleinman, P. Daum

Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA (correspondence: <u>ynlee@bnl.gov</u>)

J. Jayne

Aerodyne Research Inc., 45 Manning Rd., Bellerica, MA 01821, USA

J. Hubbe, L. Alexander

Pacific Northwest National Laboratory, P.O.Box 999, K8-88, Richland, WA 99352, USA

J. Brioude

NOAA Earth System Research Laboratory, 325 Broadway, CSD04, Boulder, CO 80305, USA

<u>Acknowledgements:</u> G-1 Chief pilot, Robert Hannigan, and crew. Supported by US DOE Atmospheric Science Program

VOCALS SEP REx: Scientific Program Overview

Hypothesis 1c: The small effective radii measured from space over the SEP are <u>primarily controlled by anthropogenic</u>, rather than natural, aerosol production, and that <u>entrainment of polluted air from the lower free-troposphere</u> is an important source of cloud condensation nuclei (CCN).

A first level goal: To identify sources of aerosol particles by measuring their chemical constituents and spatial distributions

Natural sources:

- DMS
- sea-salt
- dust

Anthropogenic sources:

- smelters
- urban
- agricultural activities

Chemical measurements on board the G-1

PILS-IC (3.0 min, bulk)	Na+, Cl ⁻ , CH ₃ SO ₃ -, Mg ²⁺ NO ₃ ⁻ , SO ₄ ²⁻ , NH ₄ + K+, Ca ²⁺
cToF-AMS (22 sec, size resolved)	NO ₃ ⁻ , SO ₄ ² , NH ₄ +, Org
PTR-MS (30 s)	VOC, DMS
Other (10 s)	O ₃ , SO ₂ , CO

Aerosol was dominated by SO₄²⁻ during VOCALS

Hypothesis 1c: The small effective radii measured from space over the SEP are <u>primarily</u> <u>controlled by anthropogenic, rather than natural, aerosol production</u>, and that entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei.

The first part of the hypothesis is supported by the observation that the coastal aerosol was dominated by anthropogenic SO_4^{2-} *.

- strong land-to-sea SO₄²⁻ gradient, consistent with terrestrial origin
- Insignificant DMS contribution
- Small sea-salt SO₄²⁻

*Thick red lines in graphs represent weighted average

Hypothesis 1c: The small effective radii measured from space over the SEP are primarily controlled by anthropogenic, rather than natural, aerosol production, and that <u>entrainment of polluted air from the lower free-troposphere is an important source of cloud condensation nuclei.</u>

The second part of the hypothesis is not supported by G1 observations*.

- MBL SO₄²⁻ concentration was greater than that of the lower troposphere
- A relatively smooth land-to-sea SO₄²⁻ concentration gradient suggests advection of terrestrial sources into MBL is important

*Thick red lines in graphs represent weighted average

- on average, ~25% SO₄²⁻ neutralized by NH_3
- Above-cloud SO₄²⁻ appreciable, but smaller than below-cloud levels
- Net O₃ loss in SO₂ plumes accompanying NO → HNO₃

A detailed look of 10/28/08 flight

- Missing cations were associated with excess nss-SO₄²⁻
- The missing ion is identified to be the hydronium ion by conductivity measurement

H₂SO₄ aerosols were externally mixed with modified sea-salt particles

- Cl⁻ deficit of ~20% was evident
- mostly due to uptake of gaseous HNO₃
- partly due to H₂SO₄ via
 - gas phase?
 - cloud phase?

Org, NH₄⁺, and NO₃⁻ were correlated with SO₄²⁻, suggesting common source attributes and terrestrial origin

0.4 - Alt < 1000 m $a = 0.017 \pm 0.002$ [∾] ∈^{0.3} ^{0.2} ⁺ HN_0.1 $b = 0.076 \pm 0.002$ 1500⊵ - 1000 -500 0.0 2 [SO₄²⁻], µg m⁻³ 0 0.6 -Alt < 1000 m $a = 0.082 \pm 0.004$ $b = 0.094 \pm 0.003$ 1000 - 500 0.0-0 $[{\rm SO_4}^{2\text{-}2}],\,\mu\text{g m}^{\text{-}3}$ 4

<u>Org, NH₄⁺, SO₄²⁻ well mixed in MBL</u>

However, not NO3-

- Sea-salt particles on which NO₃⁻ deposits are externally mixed with SO₄²⁻ aerosols
- Sea-salt particles exhibit a vertical gradient
- NO₃⁻ not detected by AMS

Effects of hygroscopicity of H₂SO₄

- Direct radiative effect
- CCN properties

Example: aerosol mass vs DMA volume:

• The near unity slop indicates DMA volume included the water present in SA aerosols (cf. DMA RH = ~13-16%, and H_2SO_4 growth factor is ~1.2).

- Coastal MBL aerosols were dominated by externally mixed H₂SO₄ and sea-salt particles.
- Sea-salt particles were modified by HNO₃ as well as by H₂SO₄
- H_2SO_4 aerosols are anthropogenic:
 - a strong land-ocean gradient
 - known emission sources
 - good correlations with organics and NO_3^-
 - insignificant contributions from DMS
- Entrainment into MBL from lower free troposphere as an CCN source may be less important than model predictions