

Naval Research Laboratory

Marine Meteorological Division

Two-way Coupled Air-Ocean Interaction in the VOCALS area using COAMPS/NCOM

Xiaodong Hong¹, Shouping Wang¹, Qingfang Jiang², Larry O'Neill¹, Richard Hodur, Sue Chen, James Cummings, and Paul Martin

¹Naval Research Laboratory, Monterey, CA ²NUniversity Corporation for Atmospheric Research, Monterey, CA 93943

2nd VOCALS Science Meeting, 12-14 July 2009, Seattle, WA.

Objectives and Approaches

Understand the feedback among coastal jet, oceanic upwelling, mesoscale eddies and clouds

Coupled Ocean and Atmospheric Mesoscale Prediction System (COAMPS®)

--- Atmospheric component

Navy Coastal Ocean Model (NCOM)

--- Oceanic component

Navy Coupled Ocean Data Assimilation (NCODA)

--- multivariate optimum interpolation

VOCALS Regional Experiment (Rex) October 20 – November 30, 2008

--- Verification with the observations

COAMPS® is a registered trademark of the Naval Research Laboratory

Nested Grids for COAMPS, NCOM and NCODA

NCOM Grid: 199 x 181 x 41

NCODA Grid: 199 x 181 x 30

COAMPS Grid 1: 151 x 151 x 45 Grid 2: 199 x 181 x 45 Grid 3: 181 x 181 x 45

COAMPS and QuikSCAT Mean Surface Fields 10-m wind and sea level pressure (Oct 20 – Nov 30, 2008)

COAMPS Surface Fields

29-31 Oct (Strong coastal jet) vs. 26-29 Nov (Weaker coastal jet)

COAMPS and NCOM Mean Surface Fields

Oct 20 - 31, 2008 (Strong coastal jet)

COAMPS and NCOM Mean Surface Fields

Nov 26 – 29, 2008 (Weaker coastal jet)

COAMPS Cloud Water Mixing ratio

Feedback from the ocean to the atmosphere

NCOM Current Inertial Oscillations

29-31 Oct (Strong) vs. 26-29 Nov (Weaker) (30 º5, 75 ºW)

Summary

- Two-way coupled COAMPS and NCOM are used to studied the feedback among coastal jet, oceanic upwelling, mesoscale eddies and clouds.
- Mean surface wind from the coupled simulation is more comparative to the QuikSCAT observation.
- Large variation in the coastal jet associated with the strength and the location of subtropical high-pressure system along the Chilean coast.
- Stronger coastal jet brings colder and drier air to the coast and offshore of Chile. This results larger surface heat fluxes and higher boundary layer height.
- Stronger coastal jet induces stronger upwelling and the upwelled cold water extends farther offshore.
- Oceanic eddies are propagated westward during the weaker coastal jet period.
- Strong unstable condition in the atmospheric boundary layer is generated during the strong coastal jet period. This results more and organized clouds.
- Inertial oscillation increases its strength during the weaker coastal jet period.