Production of Seawater DMS and Related Compounds, measurements from the NOAA Ship Ronald Brown

> Andrew Hind, Carlton Rauschenberg and Paty Matrai

Bigelow Laboratory for Ocean Sciences

Second VOCALS Meeting, Seattle, July 12-14 2009

Questions:

is there sufficient marine DMS (dimethyl sulphide) production to sustain observed flux and is this enough to produce observed CCN (cloud condensation nuclei) and clouds?

what is the role light/UV (*f* clouds, POCs (pockets of open cells), and eddies, filaments on DMS production?

Oceans supply globally: 98% of atmospheric DMS 94% MSA (methanesulfonic acid) 32% SO₂

 $\equiv >$

18% non-sea-salt SO₄²⁻ but in the S hemisphere this **43%**

Marine biology influences clouds, how do clouds influence biology? In which direction is the feedback?

(numbers from Gondwe et al., 2003)

DMS production is complex and difficult to predict...

From Simo, 2001

Seawater measurements we made: Discrete DMS, DMSP Chlorophyll fluorescence DMS/DMSP production rates Nutrients (NO₃⁻, PO₄²⁻, SiO₃²⁻)

Light spectra, 300-800 nm

+

Incubations

Examining the role of light/UV on surface seawater Measuring changes in DMS/DMSPp/DMSPd/chlorophyll over 24 hrs

Typically 3 treatments, each in triplicate so 12 bottles Each bottle 3 x for chlorophyll 2 x for DMS 2 x for DMSPp

2 x for DMSPd

=> 108 samples per incubation

Initial DMS vs. net DMS production

Lots more to do

Analysis of light and ocean mixed layer depth – relationship between DMS/DMS production and dose of light/UV?

 Test existing algorithms for SW [DMS] in this region (Vallina, Bell, et al.)

What is the role of plankton species composition?

