

VOCALS REx: Ships

Oct 2- Nov 3, 2008

On station within operating area, exact location determined based on Leg 1 survey.

VOCALS REx: Olaya

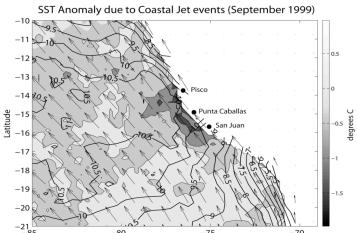
Main Objective and Hypothesis

The main objective of the Peru VOCALS Coastal Component is to investigate the meso and submesoscale ocean-atmosphere interaction in the upwelling cell off southern Peru (Pisco-San Juan) and to determine the associated biogeochemical responses. Two main hypotheses are considered:

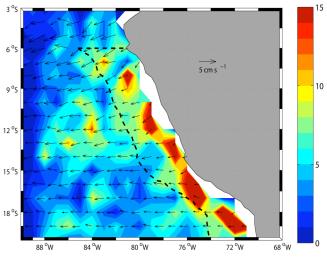
- There is a strong feedback/ interaction between the variability of the atmospheric coastal wind, the upwelling cell and the instabilities of the associated thermic front and cloud clearing between Pisco-San Juan.
- Mesoscale eddies play an important role in the transport of coastal upwelled water properties to offshore regions.

Observation of the upwelling plume and front by a glider (magenta line). (Color shaded corresponds to SST observed in February of 2007, the Peru VOCALS cruise is indicated by blue lines).

VOCALS REx: Olaya



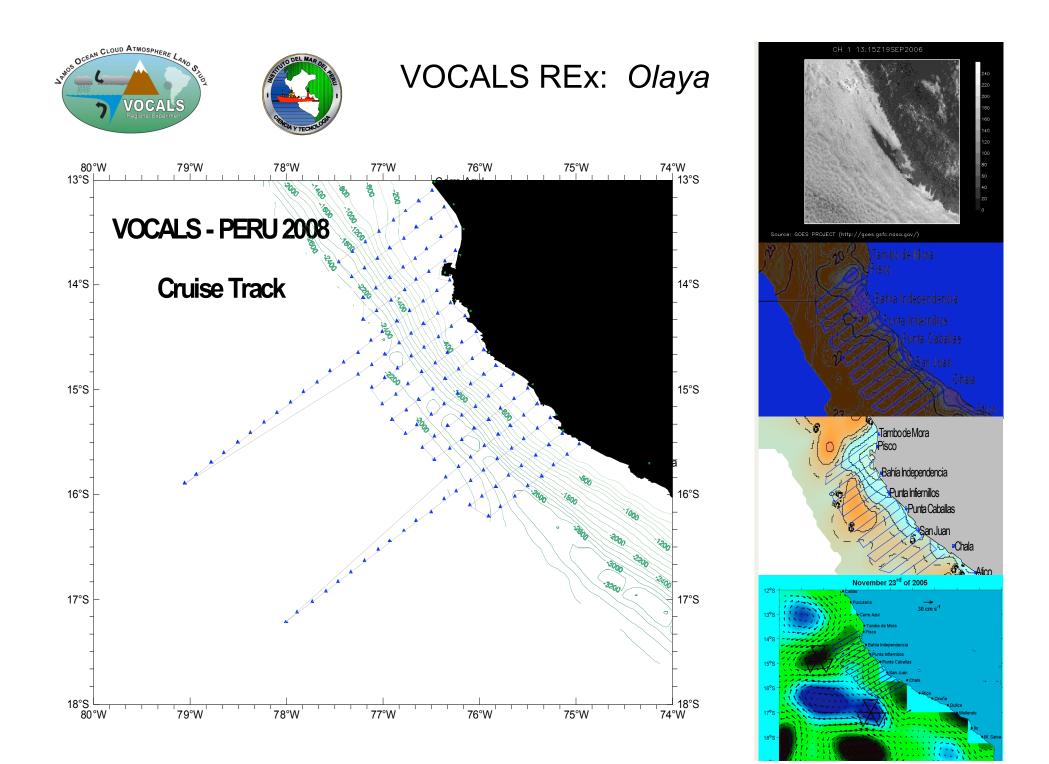
Specific questions and


Approaches

This project address (through modeling and from the available observations) **specific questions** that are believed to be relevant to the understanding of the variability in the Pisco-San Juan region. These are:

- SQ1. Spatial structure of the low-level atmospheric circulation (15°S)
- SQ2. Quasi-permanent coastal clearing (~15°S)
- SQ3. Strongest coastal upwelling and eddy activity
- SQ4. Coastal Jet events and their impacts on the vertical oceanic variability
- SQ5. 4-D Structure of mesoscale features and related cross-shore transports

Spatial structure of the $S\overline{S}^{\text{80}}$ (TMI)-cooling⁷⁵ related to a well defined CJ (about 7 days) which occurs at the beginning of September 1999 [Renault, et al, 2007].


Mean regional climatology of eddy genesis occurrence for the time period October 1992-August 2006 [Chaigneau, et al, 2007, submitted].

VOCALS REx: Olaya

IERIC	In Iand	Surface measurement	Ta, Humidity, SLP, Wind speed/direction, Cloudiness (cloud cover, types), Weather conditions
		Vertical profile	Ta, Humidity, Pressure, Wind speed/direction
OCEANOGRAPHIC & ATMOSPHERIC	cruise Coastal	Surface measurement	Ta, Humidity, SLP, Wind sp_eed/direction, Cloudiness (cloud cover, types), Long /Short Wave Radiation, Weather conditions
		Vertical profile measurement	Ta, Huggiditys Beessyrphyting zpeptidirection
	COMPONENTS Components Cruise	Surface measurement	Tw, Salinity, Horizontal Velocities, O ₂ , Fluorescense, Chlor -a, pCO ₂ Nutrients (NO ₃ , PO ₄ , SiO ₃ , SiO ₄), Phyto & Zooplancton (eggs -larvae)
		Vertical profile	Tw, Salinity, Vertical Velocities O ₂ , Fluo rescense, Chl or-a, pCO ₂ Nutrients (NO ₃ , PO ₄ , SiO ₃ , SiO ₄), Phytoplankton, Zooplancton (eggs -larvae)
RY S S	Acoustic measurements		Ecotraces of fish distribution and abundance, zooplancton
FISHERY RESOURCES	Labor	atory Analysis	Post processing of acoustic data If trawl sampling: fish biology and stomach content analysis

Miami 24⁰N 2 12⁰N Rodman 0⁰ 12⁰S Arica WHO SHOA 24⁰S 75⁰W 65⁰W $85^{\circ}W$

Leg 1	VOCALS	RΗ	Brown
-------	--------	----	-------

Oct 2 Oct 7 Oct 7 Oct 14 survey	Depart Miami Arrive Colon, people xfer Night transit Panama Canal Arrive SHOA buoy, begin
Oct 18	Arrive WHOI buoy
Oct 18-24	Buoy deploy, recover Buoy-ship comparisons Sampling
Oct 24	Begin survey to east
Oct 27	Arrive SHOA buoy
Oct 27-Nov 2	Buoy recover, deploy Buoy-ship comparisons Sampling
Nov 2	Underway to Arica
Nov 3	Arrive Arica

Oct 2	Depart Miami, no station time sampling in US, intl waters,	
testing;	met obs; MAERI?	
-	no clearance requests for	24 ⁰ N
	Cuba, Central America	
Oct 10	Arrive Ecuadorian waters, clearance	
	will be requested, no station time	
Oct 12	Arrive Peruvian waters, clearance	12 ⁰ N
will	be requested, no station time	
Oct 14	Arrive SHOA buoy, begin survey,	
	International waters, no station time	0° -
Oct 18	Arrive WHOI buoy, 6 days on station	0
Oct 24-27	Underway survey, no station time	
Oct 27	Arrive SHOA buoy, 6 days station	
time		12 ⁰ S
Nov 2	Underway to Arica, enter Chilean	
waters,		wноі
	clearance will be requested	
Nov 3	Arrive Arica	24 [°] S 85 [°] W

Leg 1 VOCALS R H Brown

Miami

Rodman

Arica

65⁰W

SHOA

75⁰W

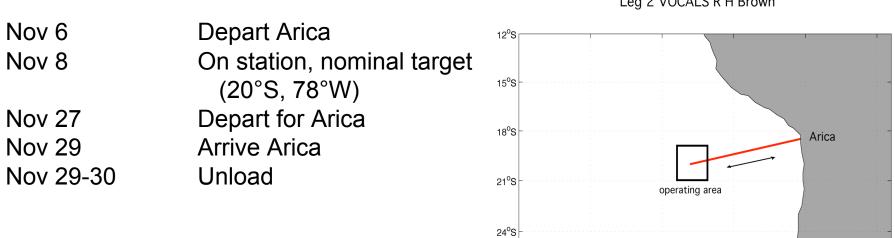
Research groups:

- WHOI Weller/Straneo moorings, UCTD, Argo Floats, drifters
- LDEO/WHOI Zappa/Farra moored instrumentation
- PMEL Sabine, moored PCO₂
- INOCAR Ecuadorian Navy Inst of Oceanography
- IMARPE Inst for Marine Research, Peru
- SHOA Chilean Navy Hydrographic and Ocean. Service, DART mooring
- NOAA ESRL Fairall air-sea fluxes, radiosondes, cloud opt. properties
- NOAA ESRL Brewer scan Doppler LIDAR
- NOAA ESRL Feingold lidar-cloud radar aerosol-LWP
- NCSU Yuter C-band radar, drizzle
- U Miami Albrecht, cloud drizzle/aerosol interactions
- U Miami Minnett radiometric SST
- Bigelow Matrai, DMS production
- U Washington/NOAA PMEL/SIO Covert/Bates, aerosols
- CU Volkamer, atmos. Chemistry
- UH Huebert DMS flux
- PMEL underway DMS
- NOAA- Teacher-at-Sea

Heavy equipment:

- · Mooring winch, anchors, and related
- 7 Vans: 1) Albrecht/Miami; 2) PMEL1/Aerosol/Chem; 3) PMEL2/Aerosol/Phys;
 4) PMEL3/Chem; 5) PMEL4/spares; 6) WHOI/mooring; 7) ESRL/lower atmos
- Radiosondes/helium
- Instruments on upper decks

Observation Systems Air-sea Fluxes, Clouds, Precipitation



Cloud Radar and Microwave Radiometer

In port in Arica, meet with A/C investigators, decide on target Nov 3-6 mesoscale feature(s); unload mooring equipment and recovered mooring hardware; people on/off

90⁰W

85⁰W

Leg 2 VOCALS R H Brown

On station within operating area, exact location determined based on Leg 1 survey.

75⁰W

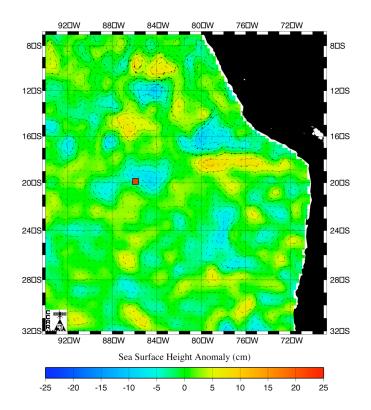
70⁰W

 $65^{\circ}W$

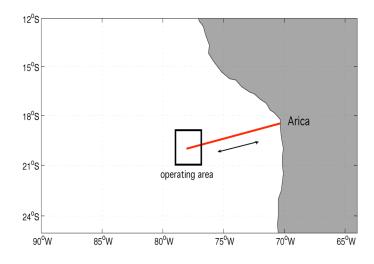
80⁰W

Research groups:

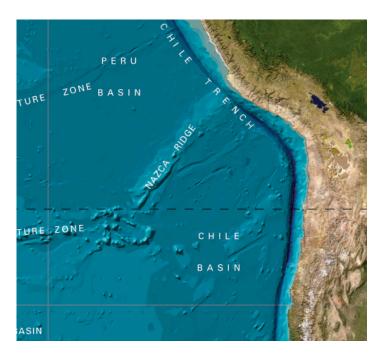
- NOAA ESRL Fairall air-sea fluxes, radiosondes, cloud opt properties
 Noak Section 2000 -
- INOCAR Ecuadorian Navy Inst of Oceanography
- IMARPE Inst for Marine Research, Peru
- NOAA ESRL Brewer scan Doppler LIDAR
- NOAA ESRL Feingold lidar-cloud radar aerosol-LWP
- NCSU Yuter C-band radar, drizzle
- U Miami Albrecht, cloud drizzle/aerosol interactions
- U Miami Minnett radiometric SST
- Bigelow Matrai, DMS production
- U Washington/NOAA PMEL/SIO Covert/Bates, aerosols
- CU Volkamer, atmos. Chemistry
- UH Huebert DMS flux
- PMEL underway DMS
- NOAA- Teacher-at-Sea


Heavy equipment:

- 7 Vans: 1) Albrecht/Miami; 2) PMEL1/Aerosol/Chem; 3) PMEL2/Aerosol/Phys;
 4) PMEL3/Chem; 5) PMEL4/spares; 6) WHOI/mooring; 7) ESRL/lower atmos
- Radiosondes/helium
- Instruments on upper decks

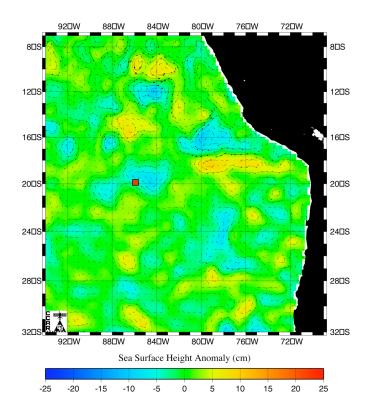


Historical Mesoscale Altimetry - Mar 17, 1998

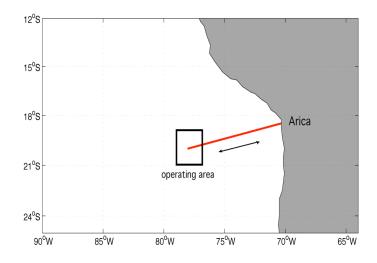


- Nov 6Depart AricaNov 8On station, nominal target (20°S,
- 78°W)
 - S[°]VV) Depart for Ariaa
- Nov 27 Depart for Arica
- Nov 29 Arrive Arica
- Nov 29-30 Unload (How much?)

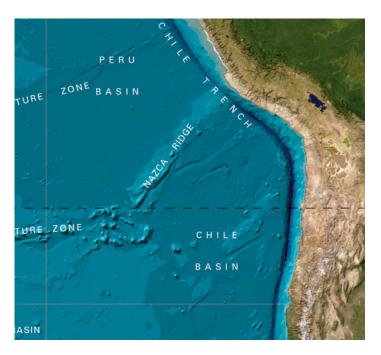
Leg 2 VOCALS R H Brown



On station within operating area, exact location determined based on Leg 1 survey.



Historical Mesoscale Altimetry - Mar 17, 1998



Nov 8-27 On station, nominal target (20°S, 78°W)

One station? Where? East of Nazca Ridge? West of Nazaca Ridge, near long term site? How much work with A/C? Leg 2 VOCALS R H Brown

On station within operating area, exact location determined based on Leg 1 survey.

