

¹Atmospheric Chemistry Division, NCAR, Boulder, CO, *rsh@ucar.edu; ²Department of Chemistry, University of York, Vork, United Kingdom; ³NOAA/NESDIS Center for Satellite Applications and Research, Cooperative Institute for Meteorological Satellite Studies, Madison, WI, ⁴CIRES, University of Colorado Boulder, Boulder, CO

TORERO motivation

The primary objective of TORERO was to study the release and transport of halogenated gases and oxidized VOCs in the Eastern Tropical Pacific during the season of high biologic productivity. Many halogenated gases, also called very short-lived species (VSLS; τ < 6 mo.) are emitted from the ocean and can impact marine boundary layer (MBL) O_3 , as well as stratospheric O_3 due to convection to the UT/LS. Despite efforts to quantify these species, uncertainties remain as to the regional distribution of sources and sinks of these compounds and their impact on MBL chemistry.

> Figure 1. Flight tracks of the 17 research flights flown from Antofagasta, Chile and San Jose, Costa Rica, 19-Jan to 29-Feb-2012.

Organohalogen measurements

Several VSLS were measured *in situ* using GC/MS on board the NCAR/NSF GV using the NCAR Trace Organic Gas Analyzer (TOGA), and from the NOAA RV Ka'imimoana by the University of York.

TORERO flights in both oligotrophic (RF05) and nutrient-rich environments.

Measurements of Short-Lived Organohalogens Over the Eastern Tropical Pacific Ocean During TORERO

<u>Rebecca Hornbrook^{1,*}, Eric Apel¹, Alan Hills¹, Lucy Carpenter², Stephen Andrews², Jean-Francois Lamarque¹,</u> Doug Kinnison¹, Simone Tilmes¹, Brad Pierce³, Rainer Volkamer⁴, and the TORERO Science Team

Ratios of Halogenated Species

Ratios of pairs of halogenated species, i.e., CHBr₃/CH₂Br₂, are indicators or MBL influence.

τ_{CHBr3} ≈ 1 mo. τ_{CH3I} ≈ 1 week τ_{CH2I2} ≈ 5 min

τ_{CH2Br2} ≈ 4 mo. τ_{cH2CII} ≈ 2 hours τ_{DMS} ≈ 1 day

Figure 4. RAQMS model curtain plots showing MBL exposure, with observed CHBr₃/CH₂Br₂ ratios.

Comparison with WACCM/CAM-chem

- troposphere and of aging within the free troposphere.
- Initial comparisons of observations to WACCM/CAM-chem model output show reasonable agreement with CHBr₃, CH₂Br₂ and CHBr₂Cl.

Saiz-Lopez, A., et al., ACP, 12, 3939, doi:10.5194/acp-12-3939-2012, 2012.