PASE December 2009

Ship & Aircraft Plumes

Flights RF10 & 1st Stack RF09

Peroxide Budgets

I. Ship & Aircraft Plumes

- Unique opportunity ... plume aerosol photochemistry ... pristine bkg air.
- High NO_x ... active halogens ... DMS oxidation impact.
- Dawn to mid-morning transition.
- Transport and dilution.

Ship Plumes Roadmap

- State possible cases from 4 flights.
- Describe what we are using as plume criteria.
- Show VOS shiptracks and HYSPLIT¹ back trajectories.
- Plume dilution estimates.
- Photochemical expectation.
- Chemical interpretation.
- Outstanding issues in the chemistry & transport.

¹The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.arl.noaa.gov/ready.html) used in this publication.

I. Plume Case Identification

Two part process to identify cases Type I - Observed chemistry and aerosol spikes; Is there a VOS¹ ship consistent with trajectories?

Type II - From VOS ship tracks & trajectory estimates; Are there missed chemical and aerosols plumes?

While it is relatively "easy" to see plumes in the chemistry, did we actually note/observe all we should have seen based upon VOSs.

¹VOS - volunteer observing ships

Noted Plume Cases

Type I

- RF13 multiple encounters after 15:55 UTC Highly likely, 3-day transport,
- RF04 ~20.53 UTC

RF07 - ex. ~23.95 & ~24.21 UTC

Plausible from CN, SO_2 and O_3 , but difficult match to VOS

<u>Type II</u>

RF01 - ~20.71, ~21.02, ~21.46, ~22.99 UTC

Probable from ship track, 1.5-day transport, mixed in with aircraft events.

Possible, 2-day transport but aloft, convective flight.

Plume Phenomenon example: RF13 ~19:57-20:04, ~20:09

Plume Phenomenon - 2

Plume Phenomenon - 3

 $SO_2 \times 10^1$ DMS x 10^1 H₂O₂ CH₃OOH

RF13 Plume Locations

RF13 Plume Trajectories & Tracks

Is 3 days okay based upon plume dilution?

Dilution estimate Method A:

- 1. Simple power law relationship in Z and Y.
- 2. Coefficients from multiple ship track expts.
- 3. Added limit on Z; $Z_{max} = 500$ m.
- 4. Plume cross section area: A(t) = Z(t)Y(t).
- 5. from von Glassow et al. [2003].

Dilution estimate Method B:

- 1. LES study using FIRE and BOMEX data.
- Dilution rate scaled to convective turnover time t*; t* = Zi/w*; w*=f(integrated bouyancy flux).
- 3. $D(t) = a(t^*/t)^b = dln(A_{plume})/dt$.
- 4. from Chosson et al. [2008].

Ship Plume Dilution Δ Estimates

RF13 Plume Maximum "Deltas"

Time	Alt.	03	S02	DMS	CN	HO	H2SO4	CH3OOH	RO2
15.99	300	-1.00	15	na	500	0.7	0.0	na	
17.02	148		150	-40	350	1.5	3.0	na	-5.0
17.22	499	-0.75	115	-20	250	1.0	3.0	-75	-8.0
18.72	313	1.00	115	-25	225	2.6	15.0	-120	-10.0
19.43	37	2.00	115	-25	225	5.0	17.0	-100	-12.0
20.04	380	2.00	75	-15	160	5.0	10.0	-180	-9.0
20.15	380	0.25	10	0	40	0.5	2.0	-50	-6.0
possible									
17.62	499	-0.25	0	0	25	0.0	0.0	-50	-1.5

Plume Event Chemistry Summary

- Increased SO₂
- Increased CN; fine = cold = hot; non-volatile
- Increased O₃ often but not always
- Increased HO (day)
- Increased H₂SO₄ (day)
- Decreased RO₂ and interpolated orgO₂ (day)
- Decreased CH₃OOH (day)
- Decreased DMS often but not always
- HO_2 and H_2O_2 relatively unaffected
- MSA relatively unaffected

Plume Photochemical Expectation¹

Ship emits NOx, SO₂, CO, VOCs, CH₂O, and "soot" and sulfate fine particles

Three stages of chemistry based on NOx

<u>Daytime</u>

stage one - early plume dispersion with NO_x >1000 ppb and NO/NO₂/O₃ photostationary state applies, O₃ depletion.

- stage two intermediate plume dispersion with $1 < NO_x < 1000$ ppb, O₃ recovery, enhanced HO and HNO₃ and H₂SO₄ production, and HO₂ and RO₂ are small, and hydroperoxide production is absent.
- stage three long-range plume dispersion with $NO_x < 1$ ppb, HO is maximized, HO₂ and RO₂ radicals return, VOC oxidation becomes important, net O₃ production and possible hydroperoxide formation.

¹Chen et al. [2005]; von Glasow et al. [2003]; Song et al. [2003a&b]; Karamchandani and Seigneur [1999]; Karamchandani et al. [1998; 2000];

Plume Photochemical Expectation cont.

Nighttime

- stage one early plume dispersion with NO_x >1000 ppb and O3 titration as NO converted to NO₂,
- stage two intermediate plume dispersion with 1 < NO_x < 1000 ppb, NO, NO₂, NO₃ and N₂O₅ chemistries are effective, and
- stage three long-range plume dispersion with NO_x < 1 ppb, NO₂ dominates NO_x, some NO₃ and negligible N₂O₅.

Power Plant and Ship Plume

- Expected photochemistry of ship plumes as they dilute is consistent with our observed changes in SO₂, HO, H₂SO₄ and O₃. CN?
- In stage 2 and 3, dilution with background air should set peroxide levels to background values, ∆ROOH=0.
- HO₂ and RO₂ should both decrease which in turn leads to decreased peroxide production.

Karamchandani et al. [1998, 1999, 2000], Karamchandani and Seigneur, [1999], von Glasow et al. [2003], Chen et al. [2005], and Song et al. [2003a&b]

Unresolved "Howevers":

Q1: How is CH₃OOH reduced in ship plume impacted ambient air relative to H₂O₂, which does not appear to change?

Plume chemistry is enriched in NO_x , and depleted in HO_2 and CH_3OO and RO_2 in general. From the standpoint of hydroperoxide production there should be little production of either H_2O_2 or CH_3OOH within a plume. Hence, the H_2O_2 or CH_3OOH concentrations should be that of the diluent air.

Q2: How does HO₂ remain constant while RO₂ is reduced as expected in plume air?

Do Loss Rxns in Plume Ans. Q1?

HO or other speculative reactant, e.g. CI from NO₃/N₂O₅/HNO₃

 $CH_{3}OOH + HO \longrightarrow H_{2}O + CH_{3}OO$ $CH_{3}OOH + HO \xrightarrow{O_{2}} H_{2}O + CH_{2}O + HO_{2}$ $CH_{3}OOH + Cl \longrightarrow HCl + CH_{3}OO$ $CH_{3}OOH + Cl \xrightarrow{O_{2}} HCl + CH_{2}O + HO_{2}$ $H_{2}O_{2} + HO \longrightarrow H_{2}O + HO_{2}$ $H_{2}O_{2} + Cl \longrightarrow HCl + HO_{2}$

	НО	C1					
H_2O_2	1.7×10^{-12}	4.1×10^{-13} (4x slower than HO)					
CH ₃ OOH	$7.4(5.5) \times 10^{-12}$	$5.7(5.9) \times 10^{-11}$ (7x faster)					

Table: *ks* for ROOH reactions with HO and Cl, cm³ molec⁻¹ s⁻¹

Simple Loss Example

 $\begin{array}{ll} [H_2O_2]_0 = 1000 & k_1 = 1.7 \times 10^{-12} \\ [CH_3OOH]_0 = 1000 & k_2 = 7.4 \times 10^{-12} \\ [HO]_p = 2 \times [HO]_{bkg} \sim 10^7 \end{array}$

$[CH_3OOH]_t:[H_2O_2]_t = exp(-\{k_2 - k_1\} [HO]t)$

From HO loss alone, it would take ~1 hr after mixing to deplete CH_3OOH relative to H_2O_2 by 100 to 200 ppt.

Does CH_3OO cycling to HO_2 by NO_x in Plume Ans. Q2?

 $\begin{array}{c} CH_{3}OO + HO_{2} \longrightarrow CH_{3}OOH + O_{2} \\ CH_{3}OO + NO \longrightarrow CH_{3}ONO_{2} \\ CH_{3}OO + NO \xrightarrow{O_{2}} \rightarrow CH_{2}O + NO_{2} + HO_{2} \\ CH_{3}OO + NO_{2} \longrightarrow CH_{3}OONO_{2} \\ CH_{3}OO + NO_{3} \longrightarrow CH_{2}O + HO_{2} + NO_{2} \\ \hline CH_{3}OO + RO_{2} \longrightarrow CH_{2}O + RO + O_{2} \\ \hline CH_{3}OO + RO_{2} \longrightarrow CH_{2}O + RO + O_{2} \\ \hline CH_{3}OO + RO_{2} \longrightarrow CH_{2}O + ROH + O_{2} \\ \hline CH_{3}OO + RO_{2} \longrightarrow CH_{3}OH + RO + O_{2} \end{array}$

net: $CH_3OO + NO_x \rightarrow CH_2O + RNO_x + HO_2$ and with

 $CH_2O + hv \rightarrow CO + HO_2 + H_2$

Could Halogen Chemistry Ans Q1 and Q2 As Well?

- Plumes are active high NO_x environments with HNO₃ NO₃ and N₂O₅.
- RF13 plumes cross dawn to mid-morning sun.
- Q3: Is there evidence of halogen and NOx chemistries in CH₃OOH, DMS or other species?

Plume "Punch" List

- Aerosol evolution piece of story.
- Directed plume photochemical simulations.
- Evidence for a halogen story.

II. Recover Flights RF10 & RF09

- Regain Fluxes for 2 of 13 flights.
- Spikes in some RAF data channels.
- Detect and eliminate ramps and jumps.
 - High pass filter.
 - Threshold defined for each variable.
- Strategy for data fill-in going forward.
- Ex. Spectra & Flux results using a simple fill strategy.

ATX Spike Example: index~436150 (25 hz)

WIC "Spike Train" Example: index ~ 424250 (25Hz)

Simple Fill Strategy

- Applies to removed Spikes & Plumes:
 RF01, RF02, RF09, RF10, RF12, & RF13
- Procedure
- 1) 75% data coverage within 200 s segment.
- 2) Determine perturbations; demean and detrend segment.
- 3) Linear interpolation of perturbation across gap (no discernable difference with zero perturbation fill).

Vertical Cospectra & Flux Comparisons

- By flight, by time, by altitude
- By Variable
 - Temperature, potential temperature (T,P)
 - Water, virtual potential temperature (T,P,q)
 - Speed (momentum: $[U^2+V^2]^{1/2}$)
 - Chemical: DMS, SO_2 , and O_3
- kCo(w'S') & ∑Co(w'S')

Virtual Potential Temperature Recalculated using MRLA with fill procedure

RF09 is on the positive edge of the range defined by other flights.

RF10 is on the negative edge of the range defined by other flights.

Going Forward on Fill Strategies

- $\checkmark \cdot 1$) zero fill
- ✓ 2) linearly interpolated values
- Singular spectrum analysis (Schoellhamer, 2001; Kondrashov and Ghil, 2006)
- 4) Lomb-Scargle periodogram (Hocke and Kämpfer, 2009)
- □ 5) ARMA automated method (Broersen, 2006)

Backup Slides

RF01 Plume Study

RF04 Plume Study

RF07 Plume Study

Plume Halogen Radical Activation

e.g., Finlayson-Pitts [2003]; Aldener et al. [2006]:

$$\begin{aligned} ClONO_{2(g)} + NaCl_{(aq)} &\longrightarrow Cl_{2(g)} + NaNO_{3(aq)} \\ NO_{3(g)} + NaCl_{(aq)} &\longrightarrow Cl_{(g)} + NaNO_{3(aq)} \\ N_2O_5 + NaCl_{(aq)} &\longrightarrow ClNO_{2(g)} + NaNO_{3(aq)} \end{aligned}$$

e.g., Finlayson-Pitts [2003]; Finlay and Saltzman [2008]: $O_3 + Br_{(aerosol)}^{-} \xrightarrow{bulk, hetero}$ $BrONO_2 + Br_{(aerosol)}^{-} \xrightarrow{}$ $BrNO_2 + Br_{(aerosol)}^{-} \xrightarrow{}$

e.g., Nissenson et al. [2008]:

$$HO_{(g)} + Cl^{-}_{(aq,sfc)} \longrightarrow 0.5Cl_{2(g)} + HO^{-}_{(aq)}$$

w, Speed Cospectrum

RF09 is central within the range defined by other flights.

RF10 is central within the range defined by other flights.

w Ozone Cospectrum

Ozone

RF09 is within the range defined by other flights.

RF10 does not have fast ozone data available.

w,H₂O Cospectrum

RF09 is central within the range defined by other flights.

RF10 is at the negative edge of the range defined by the other flights.

