1-D Modeling Analysis of HOx chemistry during PASE

Dasa Gu, Yuhang Wang, Burton Gray, and the PASE Science Team

WRF (10-km resolution) modeling domain

Model Setup

- 1-D chemical transport model (REAM)
- Assimilated meteorological fields using WRF
- O₃, CO, and water vapor concentrations are specified as observed (limited to the first 8 flights). Total ozone column from OMI.
- Diurnal steady-state OH, HO₂, H₂O₂, and CH₃OOH.

Low NOx (2 ppt) is most consistent with the obs

• Diffusion transport is more important than convective transport for O_3

Reasonably good comparison with the obs The range of simulated HO₂ is higher than measured

Table 1. Observation-to-Model ratio of OH and
 HO_2 in previous studies

OH OBS/Mod	HO ₂ OBS/Mod	Campaign (Location)	Reference
1.28	1.43	SUCCESS	[<i>Jaegle et al.</i> , 2001]
0.83	0.83	SONEX	[Jaegle et al., 2001]
1.10	0.97	PEM-TB	[<i>Olson et al.</i> , 2001]
0.71~0.93	0.81	TRACE-P	[<i>Olson et al.</i> , 2004]
0.53	0.74~1.04		[Kanaya et al., 2007]
0.95	1.28	INTEX-A	[<i>Ren et al.</i> , 2008]
1.27	0.81	PASE	this work
		States and the second second	

Heterogeneous loss of HO₂ $\frac{d[HO_2]}{dt} = -\left(\frac{r_p}{D_{HO_2}} + \frac{4}{\gamma\omega}\right)^{-1}A[HO_2]$

Table 2. Heterogeneous reaction probabilities of HO_2 in previous studies

Aerosol Type						
Sulfate	Black Carbon	Organic Carbon	Sea Salt	Dust	y	Reference
				Х	0.1	[Dentener et al., 1996]
X	Х		State Law		0.2~0.5	[<i>Tie et al.</i> , 2001]
Х	Х	Х		Х	0.2	[<i>Liao et al.</i> , 2003]
Х	Х	X	Х	Х	0.2	[<i>Martin et al.</i> , 2003]
Х					0.01~0.8	[Thornton and Abbatt, 2005]
X	Х	X	Х	Х	0.1~0.3	[Thornton et al., 2008]

Abnormal OH during RF 12 and 14

Abnormal OH during RF 12 and 14

OH Production and Loss and HO₂/OH ratio

Evidence for oceanic Cs: >

Table 3. Background and episode levels ofNMHCs used in simulations

	Background (pptv)	Episode (pptv)
Isoprene	0	100
CH ₃ CHO	30	200
CH ₃ OH	400	1300
CH ₃ CH ₂ OH	20	110
Acetone	200	800

But there is no evidence for oceanic isoprene

Conclusions

- OH and HO₂ are reasonably reproduced in general.
- Simulated CH₃OOH is good but simulated H₂O₂ is too low.
- There is indirect evidence of fast-reacting oceanic VOCs during RF 12 and 14, which greatly reduces OH levels. These VOCs are enhanced by convection.