1-D Modeling of DMS and SO₂ Chemistry in the Equatorial Pacific

B. Gray, D. Gu, Y. Wang, and the PASE Science Team

Research Focus

- Prior Studies → Mostly Box Models
 - No convection, diffusion
 - No separation of SO₂ loss to sea-salt scavenging, dry deposition
 - No cloud losses for DMS products
- This Study \rightarrow 1-D Model
 - Regional chEmical trAnsport Model (REAM) plus
 WRF meteorological fields
 - PEM Tropics-A and -B data used to constrain diffusion
 - Cloud and sea-salt losses calculated

DMS Chemistry

Ocean

Model Setup

Model constrained with PASE observations of CO and O₃

Modeled Chem and Phys Processes

- Sulfur species: DMS, SO₂, DMSO, MSIA, H₂SO₄, MSA
- DMS concentration set in lowest layer with diurnally varying boundary condition
- DMS loss via OH, BrO
- Chemical prod/loss for other species
- Sinks for soluble species
 - Dry deposition (BL only)
 - Sea-salt scavenging (BL and BuL)
 - <u>Cloud scavenging (BuL only)</u>

Sea-Salt Concentration

- Plot of area concentration for large and small sizes
- Clearly shows three vertical regions
- Size distribution associated with each pair
- Size data used to calculate scav rate

SO₂ Scavenging via Sea Salt

SO₂ taken up by sea salt, reacts with O₃ in aqueous phase

- Reaction strongly pH dependent
 - Shuts down at pH ~ 5.5
- Ocean pH buffered by excess alkalinity
 - Sea-salt assumed to have ocean composition
 - pH unaffected by acid addition until excess alkalinity consumed; pH quickly declines after
 - Available alkalinity: 0.07 eq mol per kg
- One mole of SO₂ consumes 2 eq mol alkalinity
- SO₂ loss driven by sea-salt VOLUME flux

SO₂ Scavenging via Sea Salt

•

•

$$\frac{dF}{dR} = V_D \quad \frac{dN}{dR}$$

$$\frac{dF_V}{dlogD} = V \quad V_D \quad \frac{dN}{dlogD}$$

- Convert particle flux eqn to volume flux eqn
- Multiply volume flux by alkalinity concentration
 - SO₂ scav rate is half of alkalinity flux
- BL: 10x10¹² molec cm⁻ ² day⁻¹
 - Global avg: 50 –
 200x10¹²

SS Scav for Other Solubles

- Other solubles: DMSO, MSIA, H₂SO₄, MSA
- Assumption: Saturation not reached
- These limited by kinetics, not available alkalinity
 - Use Dahneke formulation for flux rate to seasalt surface
 - Loss rate depends on surface area concentration
- BL rates (s⁻¹): $H_2SO_4 = 1.4 \times 10^{-3}$, MSA = 3.8×10⁻⁴

Cloud Scavenging

Assumption: Soluble species scavenged instantly upon contact with cloud

 From XGLWC sensor, LWC > 0.01 g/m3 for < 10% of BuL

Cloud scav driven by BuL mixing time

Cloud Scavenging

Mixing timescale
 within a layer: τ = h²/2K_z

- If <10% clouds, h will not vary much, so scav rate ~constant
- т ~ 1.5 days in BuL

PASE Data

- PASE data used for daytime comparison to model
- One model per each PASE flight used
 - Models constrained with PASE CO, O_3
 - BuL mixing constrained with PEM-TA, TB CH₃I
- Flights included: 2, 3, 5, 8, 9, 12
 - $RF01 \rightarrow No DMS$
 - RF04 \rightarrow Different region
 - RF06, RF13 \rightarrow Night flights
 - RF07 \rightarrow Too short

Diffusion, Convection

- BuL diffusion determined via CH₃I comparison to PEM Tropics-A, -B
 - BL diffusion determined by WRF
 - BuL $K_z = 3 \text{ m}^2/\text{sec}$
- Shallow convection calculated by WRF
 - Model appears to be low compared with

Results for DMS, SO₂

(using WRF-calculated Shallow Convection)

BL DMS

 Six model layers comprise BL

 Value in lowest layer via diurnally varying boundary condition

BuL DMS

Model simulates
 PASE BuL obs
 reasonably well

Significant variability in BuL observations

BL SO₂

Model underestimates SO₂ concentration

Lifetimes:

- SS Scav: 5 days
- Chem: 7 days
- Deposition if V_D is
 0.1 cm/s: 6 days

BuL SO₂

 Model slightly low vs observation

• Lifetimes:

- SS Scav: 30 days
- Chem: 7 days
 - Clouds: 1.5 days

Hypotheses for SO₂ in Lower FT

Advection from an area with a higher DMS flux

Convection much higher than predicted by WRF

Chlorophyll Map with 5-day HYSPLIT Backtrajectories

SST and Chlorophyll MAPS

NOAA SST Monthly Field for Aug 2007

NEO Chlorophyll Monthly Field for Aug 2007

Summary Regarding Advection

- HYSPLIT indicates advection from cooler waters, which could indicate greater upwelling
- However, this area does not have higher chlorophyll concentration, so it *may* not have higher DMS productivity
- Conley et al. (2009): Advection vector for PASE generally perpendicular to DMS gradient
 - On average, advection not large DMS source during PASE

10X WRF Convection

SO₂: 1X vs 10X Conv

DMS, SO₂ 10X Conv and 2pptv BrO

Summary

- Primary SO₂ loss mechanism in the CBL is cloud scavenging
 - tau_chemistry = 7 days
 - tau_deposition = 6 days (Vd = 0.1 cm/sec)
 - tau_ss in BL = 5 days, tau_ss in BuL = 30 days
 - tau_cloud = 1.5 days

 High SO₂ concentration in lower FT strongly suggests high shallow convection or advection from stronger DMS production region

– High DMS in shallow conv offset by BrO?

H_2SO_4 : 1X vs 10X Conv

MSA: 1X vs 10X Conv

10X Conv with 2pptv BrO

Summary

- Possible source for MSA near ocean surface
 BrO
- Hypotheses for enhanced MSA in lower FT
 - Halogen chemistry
 - Transport from high-DMS region
 - pH dependence in aerosol sink
 - Sharp pH decrease with increasing altitude?
 - Need to model NH_3 and H_2SO_4 uptake

Supplementals

Summary (continued)

- Even with 10X convection, model MSA in lower FT much too small
- However, addition of 2 pptv BrO to all layers greatly improves DMS and MSA comparison with 10X convection; H₂SO₄ worse
- MSA concentration still too small with 10x conv and 2 pptv BrO
 - More halogen chemistry in lower FT?
 - Cloud source for MSA from upper BuL?

OH

