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Model constrained with PAS
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SE observations of CO and O3
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S lf i DMS SSulfur species:  DMS, S
H2SO4, MSA
DMS concentration set 
diurnally varying bounddiurnally varying bound
DMS loss via OH, BrO
Chemical prod/loss for 
Sinks for soluble specieSinks for soluble specie
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Sea-Salt CoSea-Salt Co

Red:  d > 0.5 μm
Black: d < 0 5 μmBlack:  d < 0.5 μm

oncentrationoncentration

Pl t fPlot of area 
concentration for 
large and small sizes

Clearly shows threeClearly shows three 
vertical regions

Size distribution 
associated with each 
pair

Size data used toSize data used to 
calculate scav rate



SO ScavenginSO2 Scavengin
SO2 taken up by sea salt, reaSO2 taken up by sea salt, rea

− Reaction strongly pH

Sh t d t H− Shuts down at pH ~

Ocean pH buffered by exces

− Sea-salt assumed to

− pH unaffected by acpH unaffected by ac
alkalinity consumed

− Available alkalinity:Available alkalinity: 

One mole of SO2 consumes 

SOSO2 loss driven by sea-salt V
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H dependent
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C t ti l flConvert particle flux 
eqn to volume flux eqn

Multiply volume flux by 
alkalinity concentrationalkalinity concentration

SO2 scav rate is half of 
alkalinity flux

BL: 10x1012 molec cm-BL:  10x10 molec cm
2 day-1

G– Global avg:  50 –
200x1012
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• BL rates (s-1): H SO• BL rates (s 1):  H2SO4
3.8x10-4
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Cloud ScCloud Scavengingavenging

A ti• Assumption:  
Soluble species 
scavenged instantly 
upon contact with 
cloud

• From XGLWC• From XGLWC 
sensor, LWC > 0.01 
g/m3 for < 10% ofg/m3 for < 10% of 
BuL

• Cloud scav driven 
by BuL mixing time
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<10% Clouds

>90% No Clouds

avengingavenging

• Mixing timescale 
within a layer: τ =within a layer:  τ = 
h2/2Kz

• If <10% clouds, h 
will not vary much, y
so scav rate 
~constant

• τ ~ 1.5 days in BuL



PASEPASE

PASE d t d f dPASE data used for da
model
One model per each PA

Models constrained– Models constrained
– BuL mixing constrai
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– RF07 → Too short

E DataE Data
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Diffusion CDiffusion, CConvectionConvection

B L diff iBuL diffusion 
determined via CH3I 
comparison to PEM 
Tropics-A, -B

BL diffusion 
determined by WRFy
BuL Kz = 3 m2/sec

Shallow convectionShallow convection 
calculated by WRF

Model appears to be 
low compared with 
PEM T i A d B
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BL DBL DDMSDMS

Si d l l• Six model layers 
comprise BL

• Value in lowest layer 
via diurnally varyingvia diurnally varying 
boundary condition



BuL DBuL DDMSDMS

M d l i l t• Model simulates 
PASE BuL obs 
reasonably well

• Significant variabilitySignificant variability 
in BuL observations



BL SBL SSOSO2

M d l• Model 
underestimates SO2
concentration

• Lifetimes:Lifetimes:
– SS Scav:  5 days
– Chem:  7 days
– Deposition if VD is p D

0.1 cm/s:  6 days



BuLBuL SOSO2

M d l li htl l• Model slightly low vs 
observation

• Lifetimes:
SS S 30 d– SS Scav:  30 days

– Chem:  7 days
– Clouds:  1.5 days



Hypotheses for SHypotheses for SSO in Lower FTSO2 in Lower FT

Ad ti f• Advection from an 
area with a higher 
DMS flux

• Convection muchConvection much 
higher than 
predicted by WRFpredicted by WRF
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SST and ChloSST and Chloorophyll MAPSorophyll MAPS
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SO : 1X vsSO2:  1X vss 10X Convs 10X Conv



DMS SO 10X CoDMS, SO2 10X Coonv and 2pptv BrOonv and 2pptv BrO
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P i SO l hPrimary SO2 loss mech
cloud scavenging

tau_chemistry = 7 days
tau deposition = 6 daystau_deposition  6 days
tau_ss in BL = 5 days, t
t l d 1 5 dtau_cloud = 1.5 days

High SO2 concentration2
suggests high shallow c
from stronger DMS prog p
– High DMS in shallow co

marymary

h i i th CBL ihanism in the CBL is 

s (Vd = 0 1 cm/sec)s (Vd  0.1 cm/sec)
tau_ss in BuL = 30 days

n in lower FT strongly 
convection or advection 
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onv offset by BrO?
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H SO : 1X vH2SO4:  1X vvs 10X Convvs 10X Conv



MSA: 1X vsMSA:  1X vss 10X Convs 10X Conv



10X Conv wi10X Conv with 2pptv BrOth 2pptv BrO
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P ibl f M• Possible source for M
– BrO

• Hypotheses for enhan
– Halogen chemistry
– Transport from high
– pH dependence in a

• Sharp pH decrea• Sharp pH decrea
• Need to model N

marymary

MSA fMSA near ocean surface

nced MSA in lower FT

h-DMS region
aerosol sink
ase with increasing altitude?ase with increasing altitude?
NH3 and H2SO4 uptake
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Summary (Summary (

E ith 10X tEven with 10X convect
FT much too small
However, addition of 2 
greatly improves DMSgreatly improves DMS 
with 10X convection; H
MSA t ti tillMSA concentration still
and 2 pptv BrO

– More halogen chem
– Cloud source for MSCloud source for MS

(continued)(continued)

i d l MSA i lion, model MSA in lower 

pptv BrO to all layers 
and MSA comparisonand MSA comparison 
2SO4 worse
t ll ith 10 too small with 10x conv 

mistry in lower FT?
SA from upper BuL?SA from upper BuL?
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