MPEX Analyses with Dropsondes

Tom Galarneau

Regional Climate Section Mesoscale and Microscale Meteorology Division NCAR Earth System Laboratory Boulder, Colorado

MPEX Workshop 19 November 2013

Purpose

 Use MPEX observations for comparison with operational model analyses at 1200 UTC

– Dropsondes, flight level data, MTP(?)

- Examine "triggering" disturbances and air mass stratification
- Identify persistent biases/errors in operational model analyses
- Investigate how these errors may impact convective forecasts for 6–24 h lead times

Example Case: 28 May 2013

GOES-15 VIS: 00Z/29 May 2013

 Severe convection developed from Iowa to Texas Panhandle along front and dryline as upper-level features emerged from the Intermountain West

24-h PRECIP ending 12Z/29 May 2013 Stage-IV

mm

GOES-15 WV: 10Z/28 May 2013

goes-15 2013/05/28 09:54:58.293 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 11Z/28 May 2013

goes-15 2013/05/28 10:54:57.634 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 12Z/28 May 2013

goes-15 201 11:54:27.142 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 14Z/28 May 2013

goes-15 2013, UTC gvar_ch3 Copyright(c) NCAR/EOL 54:53.567

GOES-15 WV: 15Z/28 May 2013 🎽

goes-15 2013/05/28 14:54:26.262 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 16Z/28 May 2013

goes-1<u>5</u> 201 UTC gvar_ch3 Copyright(c) NCAR/EOL 748

38

GOES-15 WV: 17Z/28 May 2013

goes-15 2013/05/28 16:54:56.428 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 18Z/28 May 2013

goes-15 2013/05/28 17:54:26.24 UTC gvar_ch3 Copyright(c) NCAR/EOL

GOES-15 WV: 21Z/28 May 2013

20:54:26.453 UTC gvar_ch3 Copyright(c) NCAR/EOL qoes-1

GOES-15 WV: 22Z/28 May 2013

:54:57.867 UTC gvar_ch3 Copyright(c) NCAR/EOL goes-15

Ensemble Sensitivity: 12Z/27 May Init

2-6 km theta-e valid 2013052812 (F024)

 Goal of morning mission was to sample upper-level vorticity features and mid-tropospheric moisture over New Mexico

Ensemble Sensitivity: 12Z/27 May Init

500 hPa vorticity valid 2013052812 (F024)

 Goal of morning mission was to sample upper-level vorticity features and mid-tropospheric moisture over New Mexico

GOES-15 WV at 1454 UTC 28 May 2013

130528/1200 700011 DROP11 CAPE: 652 SLAT: 39 SLON: -104 Drop 1

GOES-15 WV at 1454 UTC 28 May 2013

130528/1200 700013 DROP13 CAPE: 936 SLAT: 37 SLON: -104 Drop 3

GOES-15 WV at 1454 UTC 28 May 2013

150

GOES-15 WV at 1454 UTC 28 May 2013

Drop 8

130528/1200 700018 DROP18 CAPE: 0 SLAT: 34 SLON: -105

Time-Space Correction

- Time-space correct dropsonde locations to 1200 UTC 28 May
- Use motion of leading nose of dry slot
 - ENE 190.1 km in 4 hours (10–14 UTC)
 - Motion 13.2 m/s at 60°
- Motion of Kansas spinner yields same result

GOES-15 Water Vapor and 500 mb Upper-Air Observations: 12Z/28 May 2013

%RH

GOES-15 Water Vapor and 700 mb Upper-Air Observations: 12Z/28 May 2013

%RH

Dropsondes and Model Analyses

500 hPa Absolute Vorticity and Wind at 1200 UTC 28 May 2013

0.5° GFS Analysis

12 km NAM Analysis

Dropsondes and Model Analyses

400 hPa Relative Humidity and Wind at 1200 UTC 28 May 2013

0.5° GFS Analysis

12 km NAM Analysis

Cross Sections: θ and Wind at 12Z/28

GOES-15 WV and 500 hPa RH and wind

Cross Sections: RH, θ_e and Wind at 12Z/28

ARW Simulations

Initialized at 1200 UTC 28 May 2013

- WRF-ARW v3.5.1
- 15/3 km two-way nests
- 51 vertical levels
- 0.5° GFS Analyses BC
- Operational GFS or NAM IC
- Tiedtke cumulus on 15 km domain/explicit on 3 km
- YSU boundary layer
- WSM-6 microphysics
- Noah Land Surface
- RRTMG shortwave radiation
- RRTM longwave radiation
- 2D Smagorinsky turbulence
- Second order diffusion
- Positive definite scalar advection

How might differences in operational analyses contribute to departures in ARW simulations?

24-h PRECIP ending 12Z/29 May 2013 Stage-IV

mm

Dataset: nam RIP: reflectInit: 1200 UTC Tue 28 May 13Fcst:0.00 hValid: 1200 UTC Tue 28 May 13 (0700 CDT Tue 28 May 13)Max ReflectivityMax 1200 UTC Tue 28 May 13 (0700 CDT Tue 28 May 13)

NAM initialization

Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 0-h forecast v12Z/28 May 2013 i12Z/28 May 2013

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL, WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NEXRAD Mosaic

ARW 2-h forecast v14Z/28 May 2013 i12Z/28 May 2013

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

Dataset: nam RIP: reflect Fcst: 4.00 h Max Reflectivity Init: 1200 UTC Tue 28 May 13 (1100 CDT Tue 28 May 13)

GFS initialization

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 5-h forecast v17Z/28 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Fcst: 6.00 h Max Reflectivity Init: 1200 UTC Tue 28 May 13 (1300 CDT Tue 28 May 13)

110 W 100 W 90 W 40 N 30 N

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 6-h forecast v18Z/28 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflectInit: 1200 UTC Tue 28 May 13Fcst:7.00 hValid: 1900 UTC Tue 28 May 13 (1400 CDT Tue 28 May 13)Max ReflectivityMax 100 UTC Tue 28 May 13 (1400 CDT Tue 28 May 13)

GFS initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 7-h forecast v19Z/28 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflectInit: 1200 UTC Tue 28 May 13Fcst:8.00 hValid: 2000 UTC Tue 28 May 13 (1500 CDT Tue 28 May 13)Max ReflectivityMax 13

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 8-h forecast v20Z/28 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflectInit: 1200 UTC Tue 28 May 13Fcst:9.00 hValid: 2100 UTC Tue 28 May 13 (1600 CDT Tue 28 May 13)Max ReflectivityMax 13

90 W

40 N

110 W 100 W 90 W 500 40 N 400 300 200 100 30 N 100 200 300 400 500 600

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RETM SW: RETMG DIFF: simple KM: 2D Smagor

ARW 9-h forecast v21Z/28 May 2013 i12Z/28 May 2013

NAM initialization

Dataset: nam RIP: reflect Fcst: 10.00 h Max Reflectivity Init: 1200 UTC Tue 28 May 13 (1700 CDT Tue 28 May 13)

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 10-h forecast v22Z/28 May 2013 i12Z/28 May 2013

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

Dataset: nam RIP: reflect Fcst: 12.00 h Max Reflectivity Name Reflectivity Init: 1200 UTC Tue 28 May 13 (1900 CDT Tue 28 May 13)

110 1

GFS initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 13-h forecast v01Z/29 May 2013 i12Z/28 May 2013

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 14-h forecast v02Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Fcst: 15.00 h Max Reflectivity Name Reflectivity Init: 1200 UTC Tue 28 May 13 (2200 CDT Tue 28 May 13)

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 15-h forecast v03Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Fcst: 16.00 h Max Reflectivity Init: 1200 UTC Tue 28 May 13 Valid: 0400 UTC Wed 29 May 13 (2300 CDT Tue 28 May 13)

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NEXRAD Mosaic

ARW 16-h forecast v04Z/29 May 2013 i12Z/28 May 2013

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 17-h forecast v05Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Fcst: 18.00 h Max Reflectivity Naid: 0600 UTC Wed 29 May 13 (0100 CDT Wed 29 May 13)

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 18-h forecast v06Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Init: 1200 UTC Tue 28 May 13 Fcst: 19.00 h Valid: 0700 UTC Wed 29 May 13 (0200 CDT Wed 29 May 13) Max Reflectivity

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 19-h forecast v07Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Init: 1200 UTC Tue 28 May 13 Fcst: 20.00 h Valid: 0800 UTC Wed 29 May 13 (0300 CDT Wed 29 May 13) Max Reflectivity

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 20-h forecast v08Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Fcst: 21.00 h Max Reflectivity Naid: 0900 UTC Wed 29 May 13 (0400 CDT Wed 29 May 13)

GFS initialization

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 21-h forecast v09Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflectInit: 1200 UTC Tue 28 May 13Fcst:22.00 hValid: 1000 UTC Wed 29 May 13 (0500 CDT Wed 29 May 13)Max Reflectivity

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 22-h forecast v10Z/29 May 2013 i12Z/28 May 2013

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

10 15 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 23-h forecast v11Z/29 May 2013 i12Z/28 May 2013

Dataset: nam RIP: reflect Init: 1200 UTC Tue 28 May 13 Fcst: 24.00 h Valid: 1200 UTC Wed 29 May 13 (0700 CDT Wed 29 May 13) Max Reflectivity

GFS initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSUPBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

NAM initialization

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 dBZ Model Info: V3.5.1 No Cu YSU PBL WSM 6class Noah LSM 3.0 km, 50 levels, 15 sec LW: RRTM SW: RRTMG DIFF: simple KM: 2D Smagor

ARW 24-h forecast v12Z/29 May 2013 i12Z/28 May 2013

500 hPa ζ+*f* and Wind at 12Z/28 May 2013

ARW (GFS Init) 0-h Forecast

- Differences in trough structure over New Mexico
- Southwest end of vorticity filament over Mexico absent in ARW

500 hPa ζ+f and Wind at 16Z/28 May 2013

ARW (GFS Init) 4-h Forecast

500 hPa ζ+f and Wind at 20Z/28 May 2013

ARW (GFS Init) 8-h Forecast

• Disturbance farther south in RAP analysis

Flow more SW over TX Panhandle in ARW

800–400 hPa Mean θ_e , and 700 hPa Wind and ζ at 12Z/28 May 2013

ARW (GFS Init) 0-h Forecast

RAP Analysis

• Midlevel $\theta_e \ge 3$ K too high in ARW

800–400 hPa Mean θ_e , and 700 hPa Wind and ζ at 20Z/28 May 2013

ARW (GFS Init) 8-h Forecast

RAP Analysis

- Midlevel $\theta_e \ge 3$ K too high in ARW over TX Panhandle prior to initiation
- Flow is more SW in ARW → impact on vertical shear?
- Flow stronger in NM in ARW → signature of triggering wave?

CAPE and SFC–700 hPa Wind Shear at 20Z/28 May 2013

ARW (GFS Init) 8-h Forecast

RAP Analysis

- CAPE comparable between ARW and RAP
- Vertical shear much stronger in ARW!

Surface Wind and Mixing Ratio at 20Z/28 May 2013

ARW (GFS Init) 8-h Forecast

RAP Analysis

- Surface more moist and flow is backed to southeasterly
- Response to upper wave over NM in ARW?

Summary

- GFS analyses too moist over west Texas/east New Mexico in region marked as sensitive in ensemble analysis
- Moist airmass moved to TX Panhandle by initiation time (~20Z)
- GFS analyses did not capture southwest end of vorticity streamer over northern Mexico
- Convective initiation in ARW forecasts was accurate; but convection overdeveloped in forecast
 - Higher vertical shear and deeper moisture in ARW, problems that originated in the GFS analyses

Final Comments

- Dropsondes revealed that the operational GFS analysis:
 - was too moist over west Texas and east New Mexico
 - had weaker horizontal shear near vorticity streamer
- Dropsondes probably not useful for addressing analysis issues with southern end of vorticity streamer over Mexico
- Convective forecasts for southern Plains region may always have problems; even if dropsonde obs can identify persistent moisture errors in operational analysis, how do we deal systems over northern Mexico

Extra slides

GOES-15 Water Vapor and 300 mb Upper-Air Observations: 12Z/28 May 2013

%RH

GOES-15 Water Vapor and 250 mb Upper-Air Observations: 12Z/28 May 2013

%RH

GOES-15 Water Vapor and 400 mb Upper-Air Observations: 12Z/28 May 2013

%RH

GOES-15 Water Vapor and 600 mb Upper-Air Observations: 12Z/28 May 2013

%RH

Dropsondes and Model Analyses

250 hPa Height and Wind at 1200 UTC 28 May 2013

12 km NAM Analysis

0.5° GFS Analysis

Cross Sections: θ and Wind at 12Z/28

GOES-15 WV and 500 hPa RH and wind

Cross Sections: RH, θ_e and Wind at 12Z/28

Cross Sections: θ and Wind at 12Z/28

GOES-15 WV and 500 hPa RH and wind

Cross Sections: RH, θ_e and Wind at 12Z/28

GOES-15 WV and 500 hPa RH and wind

800–400 hPa Mean θ_e , and 700 hPa Wind and ζ at 16Z/28 May 2013

ARW (GFS Init) 4-h Forecast

RAP Analysis

Ensemble Sensitivity: 12Z/27 May Init

Dropsonde impact at 2013052812 (F024)

 Goal of morning mission was to sample upper-level vorticity features and mid-tropospheric moisture over New Mexico **ARW Real-Time Forecast**

ARW Real-Time Forecast (GFS init)

NEXRAD Mosaic

Hi-res guidance from NCAR Initialized at 12Z/28 May

12-h forecast v00Z/29 May 2013

ARW Real-Time Forecast

ARW Real-Time Forecast (GFS init)

NEXRAD Mosaic

Hi-res guidance from NCAR Initialized at 12Z/28 May

15-h forecast v03Z/29 May 2013