

Flight Hours

MPEX project flight hour and sonde release report

0	и	0	n	n	4	٠,
0	/ 1	Э	12	u	п	ĸ.

Flight	Date	Hours	Sondes	Research objective	Remaining	Allocated	
TF01	5/7/2013	2.9		Instrument testing	91.1	Research:	
TF02	5/9/2013	2.2		Instrument testing	88.9	Test:	
TF03	5/10/2013	2.5		Instrument testing	86.4	Recon:	
RF01	5/15/2013	5.1	27	Convective precursors	81.3	Total:	200
RF02	5/16/2013	5.5	31	Convective precursors	75.8		1
RF03	5/18/2013	5.6	17	Convective precursors	70.2	Remaining:	-(
RF04	5/19/2013	5.0	29	Convective precursors	65.2		
RF05	5/21/2013	5.9	27	Convective precursors	59.3		
RF06	5/23/2013	5.7	29	Convective precursors	53.6	Sondes	
RF07	5/27/2013	5.9	29	Convective precursors	47.7	Allocated:	4
RF08	5/28/2013	4.7	21	Convective precursors	43.0	Remaining:	
RF09	5/30/2013	6.0	27	Convective precursors	37.0		
RF10	5/31/2013	6.2	29	Convective precursors	30.8		
RF11	6/3/2013	6.6	32	Convective precursors	24.2		
RF12	6/8/2013	5.8	31	Convective precursors	18.4		
RF13	6/11/2013	6.2	34	Convective precursors	12.2		
RF14	6/12/2013	5.9	33	Convective precursors	6.3		
RF15	6/14/2013	6.4	33	Convective precursors	-0.1		
Г	Total:	94.1	429				

Preparation and Upload

- · RAF started cabin preparation on 15 April
- AVAPS installed and ground tested; more extensive testing of AVAPS preceded MPEX in SAANGRIA-TEST earlier
- Payload was minimal, with AVAPS, MTP and a number of Mission Coordinator display stations
- In preparation for MPEX RAF discovered that Xcelis OpsVue was not going to work onboard the GV over Satcom
- Changed ops plan to have a dedicated Flight Coordinator onboard and a dedicated Ground Coordinator on fast LAN at Jeffco

Data System

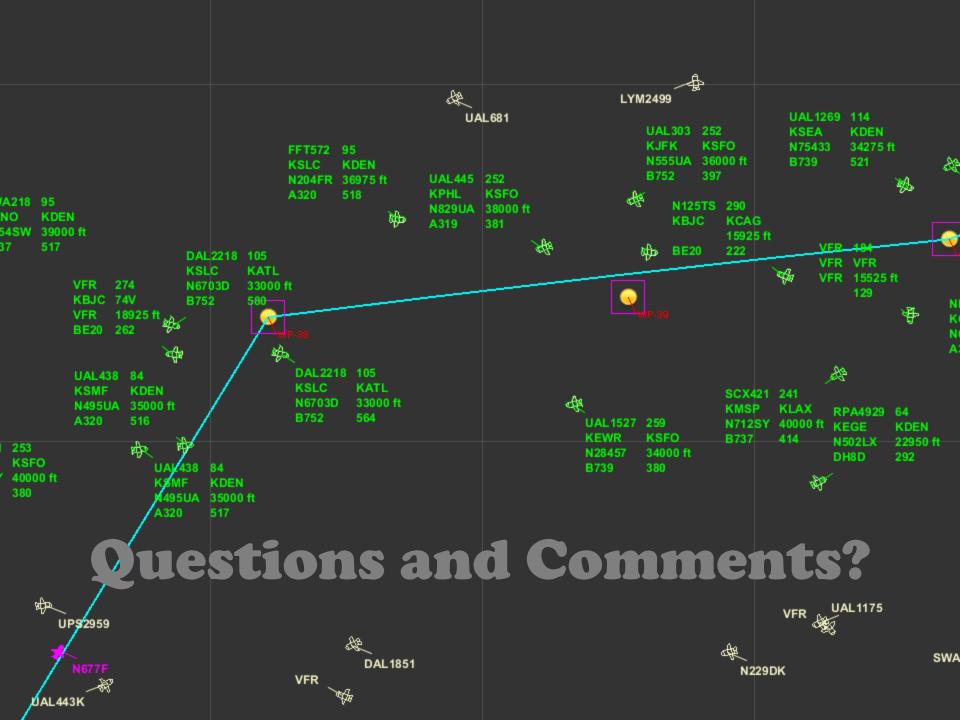

- Overall performed well
- · Minimal sensor payload, standard sensors only
- Satcom operated well and was critical for RT aircraft operation coordination
- Chat was an essential tool
- In the one instance of Satcom dropout telephone call was used to coordinate drops, worked well

Instrumentation

- Dewpointers exhibited more instability than expected from conditions
- MTP performed well
- AVAPS performed within expectations (<10% fast falls) – separate discussion, better performance desired
- Two instances of sonde jamming, one led to aborted flight; resolved with engineering changes

Flight Planning

- Pre-project FAA briefings, extensive preparations by RAF flight ops
- Obtained FAA LNO for dropsonde operations
- Prepared 107 drop points, deconflicted for ground interference
- Further deconflicted after project start when frequent FFs were encountered
- PI planning meetings attended by FPS PM who assisted with communications and pre-flight notifications



Operations

- Night operations with back to back flights: two consecutive possible, three – maybe
- 3 AM take-offs was the only way to enable drops in busy areas
- Constant attention required from Ground Coordinator and both Flight Coordinator and AVAPS Operator – high pressure ops
- Real time dialog with the pilots: turn-arounds, re-drops, aborts, etc.
- Fueling: advance arrangement for after hour support
- Some adjustment to drop points based on weather avoidance

Lessons learned

- Dropping sondes over land: possible with advanced preparations but involves a lot of careful attention
- Consecutive flights during night operations: assessment of limitations was fairly accurate, will refine more
- Redundant communication channels a must

