### NOAA-ESRL/GSD/AMB\* participation in MPEX David Dowell and John Brown

#### **Objectives of AMB participation**

- Provide opportunity to establish impact of MPEX special obs in the context of near future (~2-5y) operational NWP capabilities, using the coupled RAP-HRRR assimilation / forecasts
- (as time permits) Devise and test procedures for effective assimilation of MPEX special obs

<sup>\*</sup>Assimilation and Modeling Branch (AMB) RAP-HRRR team: Stan Benjamin (AMB Chief), Curtis Alexander, John Brown, David Dowell, Patrick Hofmann, Ming Hu, Eric James, Haidao Lin, Joe Olson, Tanya Smirnova, Tracy Smith, Ed Szoke, Xue Wei, Steve Weygandt

#### **Proposed Participation in MPEX**

Real-time field quality control for dropsonde data volunteers: David Dowell and John Brown

Parallel RAP and HRRR analyses and forecasts with dropsonde DA identical to real-time ESRL-RAP and HRRR except with addition of dropsonde data-assimilation in RAP images on MPEX field catalog (and NOAA RAP-HRRR web page) gridded model output in MPEX data archive

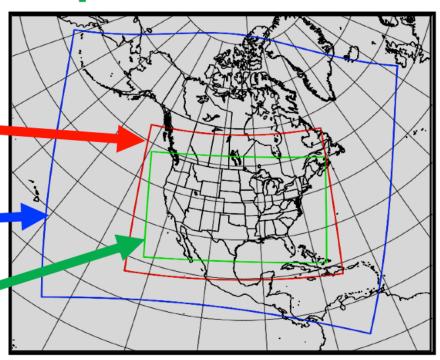
#### Post-field-phase analysis

assessment of influences of dropsonde data on HRRR forecasts assistance for PI's who use RAP / HRRR output

# Existing RAP-HRRR coupled cycling setup at GSD



#### **RUC** to Rapid Refresh transition


- CONUS domain
   North American domain
- RUC Model
   WRF-ARW Model
- RUC 3dvar GSI Gridpoint Statistical Interpolation
- RUC post
   Unipost

**Hourly updated models** 

13km RUC

13km Rapid Refresh

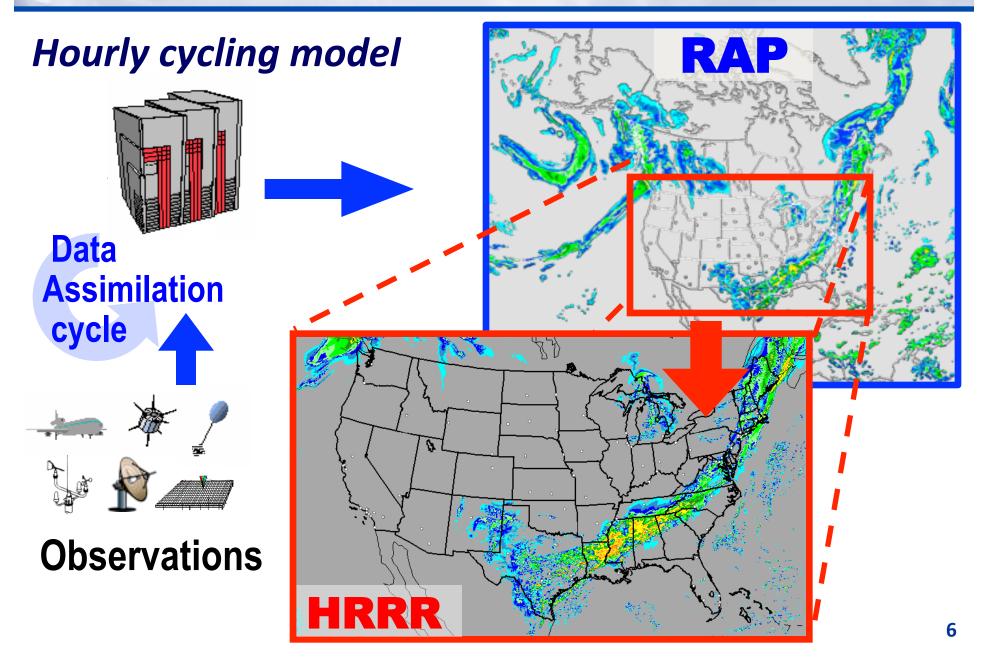
**3km HRRR** 





#### RUC -> RAP / HRRR configuration

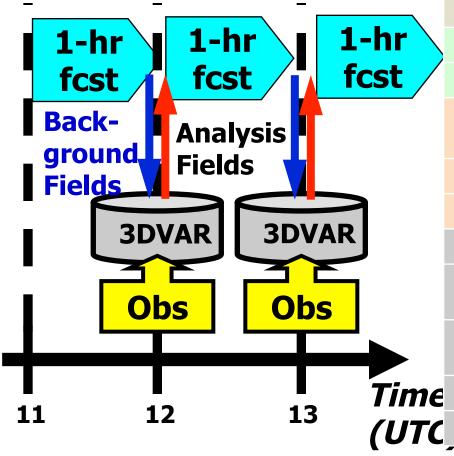
#### Community-based advanced model and analysis


- WRF-ARW: advanced numerics, non-hydrostatic
- GSI: advanced satellite data assimilation

|  | Model | Run at: | Domain         | Grid<br>Points | Grid<br>Spacing | Vertical<br>Levels | Pressure<br>Top | Boundary Conditions | Initialized   |
|--|-------|---------|----------------|----------------|-----------------|--------------------|-----------------|---------------------|---------------|
|  | RUC   | GSD     | conus          | 451 x          | 13-km           | 50                 | Sigma/          | NAM                 | Hourly        |
|  |       |         |                | 337            |                 |                    | Isentropic      | IVAIVI              | (cycle)       |
|  | RAP   | NCO     | North          | 758 x          | 13 km           | 50                 | 10 mb           | GFS                 | Hourly        |
|  |       | GSD     | <b>America</b> | 567            | 13 KIII         |                    |                 |                     | (Part. cycle) |
|  | HRRR  | GSD     | conus          | 1799 x         | 3 km            | 50                 | 20 mb           | RAP                 | Hourly - RAP  |
|  |       |         |                | 1059           |                 |                    |                 |                     | (no-cycle)    |

| Model | Assimilation     | Cloud<br>Analysis | Radar<br>DFI | Radiation        | Microphysics       | Cum Param     | PBL                    | LSM         |
|-------|------------------|-------------------|--------------|------------------|--------------------|---------------|------------------------|-------------|
| RUC   | RUC-3DVAR        | Yes               | Yes          | RRTM /<br>Dudhia | Thompson<br>(2003) | Grell-Devenyi | Burk –<br>Thomps<br>on | RUC<br>2003 |
| RAP   | GSI-3DVAR        | Yes               | Yes          | RRTM/<br>Goddard | Thompson           | G3 + Shallow  | MYJ                    | RUC<br>2010 |
| HRRR  | None:<br>RAP I.C | No                | No           | RRTM/<br>Dudhia  | Thompson           | None          | MYJ                    | RUC<br>2010 |




#### **RAP:** Data assimilation engine for HRRR



#### Rapid Refresh Hourly Update Cycle

Partial cycle atmospheric fields – introduce GFS information 2x/day

Fully cycle all land-sfc fields



| Hourly Observations                         | RAP 2012 N. Amer |
|---------------------------------------------|------------------|
| Rawinsonde (T,V,RH)                         | 120              |
| Profiler – NOAA Network (V)                 | 21               |
| Profiler – 915 MHz (V, Tv)                  | 25               |
| Radar – VAD (V)                             | 125              |
| Radar reflectivity - CONUS                  | 2km              |
| Lightning (proxy reflectivity)              | NLDN, GLD360     |
| Aircraft (V,T)                              | 2-15K            |
| Aircraft - WVSS (RH)                        | 0-800            |
| Surface/METAR<br>(T,Td,V,ps,cloud, vis, wx) | 2200- 2500       |
| Buoys/ships (V, ps)                         | 200-400          |
| Mesonet (T, Td, V, ps)                      | flagged          |
| GOES AMVs (V)                               | 2000- 4000       |
| AMSU/HIRS/MHS radiances                     | Used             |
| GOES cloud-top pressure/temp                | 13km             |
| GPS – Precipitable water                    |                  |
| WindSat scatterometer                       | 2-10K            |

## Planned Summer 2013 RAP – HRRR Redundant Configuration

Greater reliability of HRRR for FAA, renewable-energy users

To run on NOAA linux clusters
Jet and Zeus

#### **Preparation For MPEX**

Testing dropsonde data assimilation in Rapid Refresh (internal task) OSSE's with synthetic dropsonde data; early 2013

Testing dropsonde data feed (help needed)

aircraft



GTS (Global Telecommunications System)



**GSI (Gridpoint Statistical Interpolation)** 

how and when to test?

Preparing archive for RAP and HRRR output (help needed) output from both standard and parallel model versions images and gridded data

Training for real-time field dropsonde-data qc with aspen (help needed) at NCAR, during month before field phase? improved qc by David and John if they are provided good coffee

#### **Proposed Participation in MPEX**

Real-time field quality control for dropsonde data volunteers: David Dowell and John Brown

Parallel RAP and HRRR analyses and forecasts with dropsonde DA identical to real-time ESRL-RAP and HRRR except with addition of dropsonde data-assimilation in RAP images on MPEX field catalog (and NOAA RAP-HRRR web page) gridded model output in MPEX data archive

#### Post-field-phase analysis

assessment of influences of dropsonde data on HRRR forecasts assistance for PI's who use RAP / HRRR output