Real-time Sensitivity Analysis During MPEX

Ryan D. Torn University at Albany, SUNY

State University of New York

MPEX Planning Meeting

13 December 2012, Boulder, CO

Overview

- Hypothesis: Initial condition errors in specific locations limit the prediction of convection
- It is not always clear where is the optimal location for initial condition changes
- Can be determined via ensemble-based sensitivity analysis
- Interest in MPEX is understanding the dynamics of how IC errors translate into forecast errors

Ensemble Sensitivity

$$\frac{\partial J_e}{\partial x_j} \equiv cov(\delta J, \delta \mathbf{x}_{o,j}) \mathbf{D}_j^{-1} = \frac{cov(\mathbf{J}, \mathbf{X}_j)}{var(\mathbf{X}_j)}$$

Ancell and Hakim 2007, Torn and Hakim 2008

- Ensemble-based method of computing the sensitivity to the initial conditions
- Above equation is linear regression based on ensemble:
 - Dependent variable is ensemble estimate forecast metric
 - 850 hPa circulation for 200 km radius circle
 - Independent variable is an element of state vector
- Can also obtain confidence bounds on sensitivity value

MPEX Activities

- Compute real-time forecast sensitivities using ensemble forecasts produced at NCAR (see Glen's talk)
- Regions of large sensitivity can provide guidance on where to fly GV during the next morning.
- Sensitivity determined either through gradient, or composites of members with large metric vs. small metric values

Forecast Sensitivity

Forecast Metrics:

- Precipitation averaged over time period and horizontal location
- Area of simulated reflectivity exceeding 35 dBZ in area
- Skewness of reflectivity over area
- SUGGESTIONS???

Fields to compute sensitivity to:

- Low-level θ_e
- Low-level stability
- mid-level moisture
- Upper-level features (PV, Vorticity, height)
- Vertical Wind Shear
- SUGGESTIONS???

Example Case

Forecast Initialized 0000 UTC 30 May 2012

Observed reflectivity on 0000 UTC 31 May 2012

F027 Precipitation valid 2012053103

60

50

70

80

90

Sensitivity Example

Difference Between High/Low Precip. Fcst

Sensitivity to 12 h forecast

12 h forecast of theta-e < 1 km AGL

Sensitivity Cont.

< 1 km AGL meridional wind sensitivity

330 K PV Sensitivity

Potential Operations Timeline

- Need to determine sensitivity prior to daily planning meeting
- Instead of computing sensitivity to IC, will do sensitivity to earlier forecast lead time.
 – Likely sensitivity of 36 h forecast to ~22 h forecast.

