Upsondes

- Purpose: to pursue the fundamental scientific questions of convective storm-environmental feedbacks and predictability under MPEX Hypothesis 2, e.g.,
 - quantify the observed environmental modifications and upscale feedbacks from deep convection, and relate these back to the characteristics of the convection;
 - evaluate model simulations of upscale feedbacks from deep convection with MPEX observations; and
 - explore the predictability of convectively disturbed atmospheres.

Upsondes

- These objectives will be met using various diagnostic approaches applied to the radiosonde observations (raobs), including:
 - calculation of thermodynamic and kinematic parameters (e.g., CAPE, SRH, PV)
 - numerical model simulations with ensemble Kalman filter data assimilation at convectionallowing resolutions; and
 - careful comparisons between MPEX observations and model simulations.

Upsonde deployment

- two mobile units total (an NSSL unit, and a Purdue unit), each containing two sonde systems.
 - with two dual-channel systems, a total of 4 raobs will be collected within an hour
 - both teams will be using InterMet systems
 - assuming redeployment after each launch, (8 to) 12 raobs per mission will be collected in and around the region of convection
- possible (hopeful) addition of CSU system
 single channel; additional 2-3 raobs per mission
- We plan to conduct some some variant of the originally proposed C-B strategy

For each C-B(Ground) IOP: 12 sondes

Strategies

- proposed: serial launches, at ~fixed sites
 mobile strategies also plausible
- strategy depends on storm motion

– time-space conversion based on ${\boldsymbol{\mathsf{C}}}$

a (RM) supercell motion is assumed in the following examples

Downstream Effects

Upstream Effects

Distance D from storm path could be varied if enough cases sampled.

Surround Strategy (Upstream and Downstream Effects)

Distance D from storm path could be varied if enough cases sampled.

Surround Strategy (Upstream and Downstream Effects)

blue shows possible CSU launches?

Distance D from storm path could be varied if enough cases sampled.

Upsonde deployment

- We plan to conduct some some variant of the originally proposed C-A strategy, provided that we're already in a favorable geographic location for the C-B sampling
- proposed "mobile" deployments, moving in the direction of initial launch sites for C-B sampling

- hence, in a direction downstream of CI location

For each C-A(Ground) IOP: 8 sondes

Pre-convective launches

Factors that will influence deployment decisions/strategies

- anticipated convective mode
 - sample variety of modes...(but with desire to have reasonable sample of supercells?)
- storm motion
- relative proximity to ARM SGP site
 4xdaily launches (00,06,12,18 UTC)
- relative proximity to NWS sites, profilers

Case 1: how to deploy?

Case 2: how to deploy?

Logistics

- Both teams will be forward deployed during the duration of the project.
- One key issue relates to a nationwide shortage of helium
 - we will begin acquiring tanks of helium soon, store them at NSSL, and then use a rented vehicle (U-Haul) outfitted with racks to shuttle tanks to the field teams

Communication

- cell-phone communication:
 - between teams, to coordinate launch positions, times
 - with ops center, for forecast/nowcast information
- transmission of raob for real-time use

Forecasting/nowcasting

- critical forecast information: (by 0600 UTC?)
 - predicted storm motion
 - geographical location of convection initiation (CI)
 - predicted time of CI
- critical nowcast information
 - actual storm motion
 - storm location/mode
 - we are planning to access radar data in each vehicle using GR level III

Safety considerations

- launches after dark?
- lightning
- crew fatigue