Aerosol Measurements: sampling, size distributions, and CCN profiles

Lucas Craig, Arash Moharreri, Matthew Brown, and Suresh Dhaniyala Mechanical and Aeronautical Engineering, Clarkson University

Athanasios Nenes

Schools of Earth and Atmospheric Sciences and Chemical and Biomolecular Engineering, Georgia Institute of Technology

Darin W.Toohey

University of Colorado, Boulder

David C. Rogers

RAF, National Center for Atmospheric Research

Objectives

- Aerosol samplers
 - BASE Blunt-body aerosol sampler (Clarkson)
 - Hi-CAS High-speed cross-flow aerosol sampler (Clarkson)
 - SMAI Sub-micron aerosol inlet (NCAR, Al Schanot)
- Aerosol size distribution measurements
 - DMT UHSAS (tentative)
 - Optical sizing, 60-1000 nm; 1Hz
 - High-flow Dual-channel Differential Mobility Analyzer (HD-DMA);
 - Electrical-Mobility sizing, 1.6-1000 nm (During ICE-T: 10-100 nm); 0.1 Hz
- Size-classified CCN measurements
 - Scanning CCN counter (Athanasios Nenes' instrument)

Relevance to ICE-T

Accurate aerosol sampling inside and outside cloud systems Aerosol size distributions:

- One of the mission critical measurements.
- Measurements in the size range of 10-1000 nm will provide a complete picture of the aerosol population at high temporal resolution
- Measurements of interstitial aerosol size distributions will provide critical data on aerosol population acting as CCN

• Size-classified CCN measurements:

- Will provide information about the mixing state of the aerosol population
- Will help determine the possible role of mid-level entrainment in feeding CCN and IN into maritime convective clouds.

Introduction: Sampling artifacts

 Enhancements to aerosol measurements from breakup of activated cloud drops.

Liquid film formation

Aerodynamic

breakup Impingement

Wal

Aerosol samplers

Intercompare CN measurements from different samplers

 Determine their relative performance in sampling artifact-free interstitial aerosol sampling

 Data from different inlets will permit development/validation of droplet-splatter models

Flight tests – preliminary results (PLOWS)

Flight tests – preliminary results

Splash Modeling

The initial design eliminated splatter particles from cloud droplets of size smaller than 30 – 50 µm In the presence of drizzle, rain, and ice particles, larger splash/splatter generated particles make it to the interstitial inlet location

Aircraft based measurement

Size-classified CCN

- Scanning flow CCN instrument
 - Range of super-saturations possible in 30 s.
 - Super-saturation profiles of particles in the size range of 50-100 nm will be obtained in different representative air masses
- Size classified particles from the HD-DMA sampled into the Georgia Tech CCN instrument
 - Two possible operational strategies:
 - Size-classified CCN fraction at one supersaturation
 - Possible in ~ 30 seconds
 - CCN fraction at different supersaturations, for selected diameters
 - ~ 2 minutes

The Streamwise Thermal-Gradient Cloud Condensation Nuclei Counter

- Metal cylinder with wetted walls
- Streamwise Temperature Gradient
- Water diffuses faster than heat
- Supersaturation, S, generated at the centerline = f (Flowrate, Pressure, and Temp. Gradient)

Roberts and Nenes (2005)

Scanning Flow CCN Analysis (SFCA) Moore and Nenes (2009)

Operation:

- Flowrate is linearly ramped over user-specified upscan, peak, and downscan time intervals
- Temp. gradient, Press. = const.
- Can be combined with a DMA to select a single particle size and/or a CPC to measure CN

Analysis/Results:

- CCN response curves similar to those obtained by stepping supersaturation
- Complete CCN spectrum in less than 30 seconds! (versus ~ hr.)

SFCA Deployment: Calnex (2010) "Ship module"

- Scanning %SS over 14-sec. intervals (typically ~0.25-0.65% SS) on NOAA WB-P3 airborne platform
- Able to switch between scanning and constant flow modes to track very small (ship) plumes

5000

4000

1000

800

600

400

3000 NO 2000

Flow Rate (Vccm)

 Contact info: Athanasios Nenes (nenes@eas.gatech.edu)

Acknowledgments

- Al Schanot, NCAR
- Andy Heymsfield, NCAR
- NSF AGS for funding

High-flow Dual Channel DMA (HD-DMA)

Inner radii : 10 cms
Outer radii : 11.02 cms
Length (port 1) : 5cms
Length (port 2) : 22.5cms
Particle size : 2nm-2000nm
Sample flow : 1-20lpm

Experimental Data: Monodisperse AS Aerosol

60-Second Ramps

- 50 nm ammonium sulfate particles selected by DMA
- Upscan: t_{scan} ~ 28s Downscan: t_{scan} ~ 136s (Green Curve)
- Excellent agreement between simulated and measured activated ratios!
- Outlet droplet sizes plateau and then decrease with decreasing residence time (flowrate), increase with increasing residence time

Sample DMA data PLOWS rf06

