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Objectives

 Aerosol samplers

◦ BASE – Blunt-body aerosol sampler (Clarkson)

◦ Hi-CAS –High-speed cross-flow aerosol sampler (Clarkson)

◦ SMAI – Sub-micron aerosol inlet (NCAR, Al Schanot)

 Aerosol size distribution measurements

◦ DMT UHSAS (tentative)
 Optical sizing, 60-1000 nm; 1Hz

◦ High-flow Dual-channel Differential Mobility Analyzer (HD-DMA);  
 Electrical-Mobility sizing, 1.6-1000 nm (During ICE-T:  10-100 nm); 0.1 Hz

 Size-classified CCN measurements 

◦ Scanning CCN counter (Athanasios Nenes’ instrument)



Relevance to ICE-T

 Accurate aerosol sampling inside and outside cloud systems

 Aerosol size distributions:

◦ One of the mission critical measurements.  

◦ Measurements in the size range of 10-1000 nm will provide a complete 

picture of the aerosol population at high temporal resolution

◦ Measurements of interstitial aerosol size distributions will provide 

critical data on aerosol population acting as CCN

 Size-classified CCN measurements:

◦ Will provide information about the mixing state of the aerosol 

population

◦ Will help determine the possible role of mid-level entrainment in 

feeding CCN and IN into maritime convective clouds.
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Introduction: Sampling artifacts
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• Enhancements to aerosol 

measurements from breakup 

of activated cloud drops.



Aerosol samplers

 Intercompare CN 

measurements from 

different samplers 

 Determine their relative 

performance in sampling 

artifact-free interstitial 

aerosol sampling

 Data from different inlets 

will permit 

development/validation of 

droplet-splatter models
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BASE – CFD results
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Flight tests – preliminary results (PLOWS)
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Flight tests – preliminary results
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Splash Modeling
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The initial design 
eliminated 
splatter particles 
from cloud 
droplets of size 
smaller than 30 –
50 µm

In the presence of 
drizzle, rain, and ice 
particles, larger 
splash/splatter 
generated particles 
make it to the 
interstitial inlet 
location
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HD-DMA 

Fast scanning operation (Dubey and Dhaniyala, 2008)



Aircraft based measurement
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Size-classified CCN

 Scanning flow CCN instrument
◦ Range of super-saturations possible in 30 s.

◦ Super-saturation profiles of particles in the size range of 
50-100 nm will be obtained in different representative air 
masses

 Size classified particles from the HD-DMA sampled 
into the Georgia Tech CCN instrument
◦ Two possible operational strategies:
 Size-classified CCN fraction at one supersaturation
 Possible in ~ 30 seconds

 CCN fraction at different supersaturations, for selected diameters
 ~ 2 minutes



The Streamwise Thermal-Gradient Cloud 

Condensation Nuclei Counter

 Metal cylinder with wetted walls

 Streamwise Temperature Gradient
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Roberts and Nenes (2005)
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• Water diffuses faster than heat

f (Flowrate,

Pressure, and 

Temp. Gradient)

• Supersaturation, S, generated       

at the centerline = 



Scanning Flow CCN Analysis (SFCA)
Moore and Nenes (2009) 

Operation:
 Flowrate is linearly ramped over 

user-specified upscan, peak, and 
downscan time intervals

 Temp. gradient, Press. = const.

 Can be combined with a DMA to 
select a single particle size and/or a 
CPC to measure CN

Analysis/Results:
 CCN response curves similar to 

those obtained by stepping 
supersaturation

 Complete CCN spectrum in less 
than 30 seconds! (versus ~ hr.)

Peak

Moore and Nenes (2009)
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SFCA Deployment: Calnex (2010) “Ship module”

• Scanning %SS over 14-sec. intervals 
(typically ~0.25-0.65% SS) on NOAA 
WB-P3 airborne platform

• Able to switch between scanning and 
constant flow modes to track very 
small (ship) plumes

• Contact info: Athanasios Nenes 
(nenes@eas.gatech.edu)
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High-flow Dual Channel DMA

(HD-DMA)

 Inner radii : 10 cms

 Outer radii : 11.02 cms

 Length (port 1) : 5cms

 Length (port 2) : 22.5cms

 Particle size : 2nm-

2000nm

 Sample flow : 1-20lpm



Experimental Data:  Monodisperse AS Aerosol

 50 nm ammonium sulfate 
particles selected by DMA

 Upscan:  tscan ~ 28s 
Downscan: tscan ~ 136s 
(Green Curve)

 Excellent agreement 
between simulated and 
measured activated ratios!

 Outlet droplet sizes plateau 
and then decrease with 
decreasing residence time 
(flowrate), increase with 
increasing residence time

60-Second Ramps

Moore and Nenes (2009)



Sample DMA data  PLOWS rf06


