"Remote sensing" ice generation *Quantify dust impact on heterogeneous ice generation remotely*

Zhien Wang and Damao Zhang University of Wyoming

> Andy Heymsfield NCAR

WCL and WCR observations of ice generation in a multi-layer wave clouds.

-31°C at the flight level

Distance (m)

Why are there rooms for remote sensing?

• Big uncertainty exist in our knowledge on ice generation – we can make some progresses remote sensing even with **BIG** uncertainties.

• The global picture from remote sensing

• But, we have to relay on in situ measurements to develop new potentials.

The approach

- Select right clouds mixedphase Ac → heterogeneous ice generation
- 2. Understand the growth of ice in them
- Evaluate with in situ observations
- Extend in situ
 measurements to the global view of ice generation with the remote sensing.

The growth model

Temperature Dependent Growth

Temperature Dependent Ze

Within 500m of cloud top

Observed global ice generation within -6 and -38 degree.

In situ case 1: -15 °C

In situ case 1: -23 °C

ICE-T: nice location and time to observe dust impact.

The JJA mean dust occurrence

The vertical location of dust when they occur.

Dusty Conditions

- 1.Clouds with dense dust plume *dusty*
- Clouds over dust belt without clear dust layer – *non-dusty* The same lat and lon zone in the southern hemisphere – *south*

Dust impacts on heterogeneous ice generation

Summary

- Remote sensing (lidar and radar) is capable to estimate ice crystal number concentration in mixed-phase altocumulus clouds with uncertainties about a factor of 2 (statistically).
- Dust can enhance ice number concentration in mixed-phase altocumulus clouds by a factor 2 to 5.