

Locations of COSMIC soundings, 16 July 2010, 00:15 UTC. 10-degree grid

Term	$r_d=0.7~\mu{\rm m}$	$r_d = 1~\mu{ m m}$	$r_d = 2 \ \mu { m m}$	$r_d = 4 \ \mu m$	$r_d = 8 \ \mu m$	$r_d = 16 \ \mu \mathrm{m}$
	(% uncert.)	(% uncert.)	(% uncert.)	(% uncert.)	(% uncert.)	(% uncert.)
Focus ²	1.7	1.7	1.7	1.7	1.7	1.7
Bood size comparison	7.2	5.4	2.7	1.4	0.7	0.4
Spherical cap ratio ² (h/r_b)	5.8	5.8	5.8	5.8	5.8	5.8
Chamber temperature (T)	0.2	0.2	0.2	0.2	0.2	0.2
Surface tension (σ)	0,0	0.0	0.0	0.0	0.0	0.0
Water activity (a_{ab})	0.3	0.3	0.3	0.3	0.3	0.3
Combined sizing uncert. (e_{size})	9.4	8.1	6.6	6.2	6.1	6.1
Impaction breakup	Small	Small	Small	Small	Small	?

TABLE 4. Random sizing uncertainty terms¹, $e_{\rm At}$

 1 Coalescence on slides is treated as a concentration uncertainty. 2 Assumed size invariant.

Term	$r_d=0.7~\mu{ m m}$	$r_d = 1 \ \mu m$	$r_d = 2 \ \mu { m m}$	$r_d = 4 \ \mu m$	$r_d = 8 \ \mu { m m}$	$r_d = 16 \ \mu m$
	(% uncert.)	(% uncert.)	(% uncert)	(% uncert.)	(% uncert.)	(% uncert.)
Slide exposure time ¹ $(0.35/t)$	7.0	7.0	7.0	7.0	7.0	7.0
Air speed (U)	0.9	0.9	0.9	0.9	0.9	0.9
Conc. enhancement factor ² (P_{enh})	0.2	0.4	0.6	0.9	1.5	3.0
Ambient saturation ratio ³ (S)	3.4	1.6	0.4	0.1	0.0	0.0
Combined cone. uncert. (e_{ranc})	7.8	7.2	7.1	7.1	7.2	7.7
Collision efficiency (E)						
Hundling contumination ⁴	-	-	-	-	-	-
Impaction breakup ⁵	Scial	Small	Small	Small	Small	7
Counting uncertainty ⁶	\sqrt{N}/N	\sqrt{N}/N	\sqrt{N}/N	\sqrt{N}/N	\sqrt{N}/N	\sqrt{N}/N

TABLE 5. Random concentration uncertainty terms, e_{ci}

¹ Timing exposure assuming a 5 s exposure time. ² The numbers refer to sampling at 70% relative humidity and an airspeed of 105 m s⁻¹; for higher relative humidity, the values increase. ³ This is the effect of saturation ratio on ambient equilibrium solution drop size, as this drop particle size affects collision effect (*E*). Calculations assume a pressure of 1004 hPa, a temperature of 288.5K, and a relative humidity of 70%. The temperature and dewpoint perturbations reduce the relative humidity to 66.6%. ⁴ Handling contamination was insignificant, see Part 1. ⁵ As no aerosol particles with r_d =16 µm were observed, no estimate can be provided for the impaction breakup error of such large particles. ⁶ Counting uncertainty depends on the number of particles in a size bin; i.e. on the conditions during sampling and on the sampling duration.

Jorgen Jensen – Goals for ICE-T

- 1. Provide GCCN size distributions (sea-salt)
- 2. Extend to provide giant dust particle size distributions
 - Normal polycarbonate slides (sea salt, optical)
 - Oil-coated polycarbonate slides (dust; sticky slides, optical)
 - Carbon-tape polycarbonate slides (all; Anderson analysis)
- 3. Sampling below cloud base, profiles outside cloud
- 4. Coalescence model, maybe extend with ice phase
- 5. Aerosol processing through cloud
- 6. Entrainment analysis (thermodynamic, ozone, CO, CO2)
 - Thermodynamic variables do not work well at low altitudes
 - Chemical tracers (ozone) do not work well at low altitude Reason: long life times, quick (~12 hrs?) turnover of sub-cloud and out-side trade cumulus clouds => small vertical gradients in comparison to measurement variability/uncertainty.
 - Thermodynamic and chemical tracers may work much better for deeper clouds
 Descent Turn over times is much longer

Reason: Turnover time is much longer

- 7. Instrument modifications required:
 - Weld on a 6-mm x 6-mm cap to hold slides (simple, broke)