DYNAMO Leg IV: Observation of Horizontal Variations in Diurnal Surface Heating Layer, Nocturnal Convections, and Internal Waves using Wirewalkers

Cruise date: 14 Dec. 2011 - 06 Jan. 2012

San Nguyen Robert Pinkel Jerome Smith

DYNAMO Leg IV: 12/14/2011 - 01/06/2012

Deployed free-drifting, wave powered **wirewalkers**

Introduction

- Questions:
 - What are the horizontal scales of the diurnal surface layer and nocturnal convections in the ocean?

– How are these scales dependent on the surface conditions?

- What is the lateral variation of the internal waves?

Instrumentation: Wirewalkers

- Macro wirewalkers
 - CTD (SeaBird 49, 16Hz)
 - Depth range: ~ 200 m
 - Average profiling time: 15 minutes
 - Horizontal separation: 1 km 20 km
- Mini wirewalkers
 - Temperature-Pressure Recorder (SeaBird 39, 2Hz)
 - Depth range: ~ 20 m
 - Average profiling time: 5 minutes
 - Horizontal separation: 100 m 400 m

Instrumentation: Wirewalkers

- Macro wirewalkers
 - CTD (SeaBird 49, 16Hz)
 - Depth range: ~ 200 m
 - Average profiling time: 15 minutes
 - Horizontal separation: 1 km 20 km
- Mini wirewalkers
 - Temperature-Pressure Recorder (SeaBird 39, 2Hz)
 - Depth range: ~ 20 m
 - Average profiling time: 5 minutes
 - Horizontal separation: 100 m 400 m

30 m

Outline

- Lateral variations of internal wave field using macro wirewalkers
 - Isopycnal slope as a function of distance of separations
 - Variation of function of isopycnal slope versus stratification and shear
- Horizontal structure of diurnal heating layer and nocturnal convective layer using mini wirewalkers
 - Variance of temperature field
 - Horizontal thermal structure functions
 - Variability difference between night and day
 - Variability due to wind
- Summary

Macro Wirewalkers: Sample data σ_T

Depth (m)

(ii) 120 Depth (iii) 140

IN OF

in different stratification regimes

consecutive density profiles from Macro Wirewalker #2

in different stratification regimes

consecutive density profiles from Macro Wirewalker #2

Base of mixed layer -->large isopycnal slope

versus Richardson number (Buoyancy)²

(Shear)²

 $Ri \approx O(0.25) \rightarrow large slope$

Outline

- Lateral variations of internal wave field using macro wirewalkers
 - Isopycnal slope as a function of distance of separations
 - Variation of function of isopycnal slope versus stratification
- Horizontal structure of diurnal heating and nocturnal convective layers using mini wirewalkers
 - Variations in the near surface ocean
 - Horizontal thermal structure functions
 - Variability difference between night and day
 - Variability due to wind
- Summary

Sub-surface temperature: mean & variance

N OF

Temperature structure function $<(\Delta T)^2>$

Daytime $<(\Delta T)^2>$ versus wind speeds

coherent structures with scale of O(100 – 400 m) for strong wind

Nighttime $\langle (\Delta T)^2 \rangle$ versus wind speeds

coherent structures with scale of O(100 – 400 m) for strong wind

Summary

- Isopycnal slopes during DYNAMO Leg IV has a (Δr) -*^p* relationship, where *p* range from 1.1 to 1.9.
- Isopycnal slopes are largest at the base of the mixed layer associated with low Richardson number.
- In the diurnal heating layer, temperature variance is higher during the day.
- Higher wind speed results in more coherent structures of O(100-400m) diurnal heating and nocturnal convections.
- Further observations on horizontal scales of 10 m to 1 km needed.

Future work for data from DYNAMO Leg IV

- Develop a *spectral model* fit to isopycnal slopes versus horizontal spatial variations in the internal wave field.
- Explore the dependence of temperature structure function on the state of the ocean.