Air-Sea Interaction during active and suppressed phases of the MJO

Djamal Khelif¹, Qing Wang², and Jesus-Ruiz Plancarte¹

(1) University of California, Irvine(2) Naval Postgraduate School, Monterey

Research funded by ONR

UCI Instruments for DYNAMO

New radome plumbing, effectively traps clouds (or rain) liquid water preventing it from obstructing the pressure xducers lines. Zero water-related failure in DYNAMO.

				November 11 - December 13 2011								UTC Date			
DYNAMO NO.	AA WP-3D	N43RF	11/11	11/13	11/16	11/19	11/22	11/24	11/26	11/28	11/30	12/04	12/08	12/13	
Instrument		Flight	RF 01	RF 02 *	RF 03	RF 04	RF 05	RF 06	RF 07 *	RF 08	RF 09 *	RF 10	RF 11	RF 12	
Total Temperature Thermistor															
Rosemount Temperature															
LI-COR 7200 CO2															
LI-COR 7200 Humidity															
Mod. Krypton Hygrometer															
Pitch Angle Rate Sensor															
Radome Gust System															
OXTS RT3003															
OXTS Base Station															
RIEGL LMS Q240i															
Heitronics IR SST															

Legend

UCI	Operational	Some data	No data	* NOAA DATA Gaps				
NOAA AOC	Convectio	n Mission	Boundary Layer Mission					

High (Multi-rate) Data from NOAA/AOC New Data System Not QCed and Not Processed by AOC

WINDS

Figure adapted from D.H. Lenschow and P. Spyers-Duran, NCAR/RAF Bulletin 23

 $u = u_p - U_a D$

 $\times [\sin\psi\cos\theta + \tan\beta(\cos\psi\cos\phi + \sin\psi\sin\theta\sin\phi) + \tan\alpha(\sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi)]$ $+ \tan\alpha(\sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi)]$ $-L(\dot{\theta}\sin\theta\sin\psi - \dot{\psi}\cos\psi\cos\theta)$ $v = v_p - U_aD$ $\times [\cos\psi\cos\theta - \tan\beta(\sin\psi\cos\phi - \cos\psi\sin\theta\sin\phi) + \tan\alpha(\cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi)]$ $-L(\dot{\psi}\sin\psi\cos\theta + \dot{\theta}\cos\psi\sin\theta),$ $w = w_p - U_aD[\sin\theta - \tan\beta\cos\theta\sin\phi - \tan\alpha\cos\theta\cos\phi]$ $+ L\dot{\theta}\cos\theta$

where u_p and v_p are the east and north aircraft velocity components, respectively; U_a is the true airspeed; α , β , θ , ϕ , and ψ are the aircraft attack, sideslip, pitch, roll, and true heading angles, respectively; L is the distance separating the INS and gust probe along the aircraft's center line; $D = (1 + \tan^2 \alpha + \tan^2 \beta)^{-1/2}$; and $\dot{\psi} = d\psi/dt$ and $\dot{\theta} = d\theta/dt$; w_p is the aircraft vertical velocity.

> Serial data from INS/GPS C-MIGITS III unit. Analog data (5-port radome gust system, P_s and T_r)

Analog-Serial Synchronization

Ground Speed AOC vs. UCI

UCI Winds

Vertical Wind Critical Test

Rule of thumb: $\sigma_w/\sigma_{Vz} < 10\%$ is acceptable WSZ(DPJ): 18%; UWZ(AOC): 11%; WZR(UCI): 4%; WZF(UCI): 3%;

Air-Sea Fluxes

$$\boldsymbol{\tau} = -\rho(\overline{uw}\boldsymbol{i} + \overline{vw}\boldsymbol{j}) = \rho C_{d10}U_{10}^2$$
$$H_s = \rho C_p \overline{w\theta} = \rho C_p C_H U_{10}(\Theta_s - \Theta_{10})$$
$$E = \overline{w\rho_v} = C_E U_{10}(\rho_{vs} - \rho_{v10})$$
$$H_l = h_{fg}E$$

High-Rate Data Status

High-Rate Data: P

PF PF P PF

PF PF PF

		November 11 - December 13					2011 UTC Date						
DYNAMO NOAA WP-3	BD N43RF	11/11	11/13	11/16	11/19	11/22	11/24	11/26	11/28	11/30	12/04	12/08	12/13
Instrument	Flight	RF 01	RF 02 *	RF 03	RF 04	RF 05	RF 06	RF 07 *	RF 08	RF 09*	RF 10	RF 11	RF 12
Total Temperature Thermistor													
Rosemount Temperature													
LI-COR 7200 CO2													
LI-COR 7200 Humidity													
Mod. Krypton Hygrometer													
Pitch Angle Rate Sensor													
Radome Gust System													
OXTS RT3003													
OXTS Base Station													
RIEGL LMS Q240i													
Heitronics IR SST													
Legend													
UCI		(Operational So		iome data			No data			* NOAA DATA Gaps		
NOAA AOC			Convection Mission					Boundary Layer Mission					

P: Processed

PF: Processed and fluxes estimated

Airborne Scanning LiDAR for wave mapping

Post-Experiment Riegl Boresighting and Wind Cals Flight 13 Jan2012, Tampa, FL

Wave field example on 111204 Along North East Track

Wave Spectra

Summary

- Turbulence instrumentation we installed on the NOAA P3 performed reasonably well as evidenced by the flux measurements capturing the suppressed to active MJO transition.
- Our vertical wind passes the pitching maneuver tests and is an improvement from the standard AOC's 1-Hz data
- High-rate data from AOC had dropouts and occasional data gaps due to new data system hickups.
- Wave measurements from the new lidar system yielded promising results though its point density is limited by the high speed of the P3.
- Finalize the data set especially the 3 flights with gaps to proceed with more in-depth analysis.