S.D. Eckermann¹, J. D. Doyle², J. Ma³, E. A. Hendricks², Q. Jiang², P. Reinecke², D. L. Wu⁴

- ¹ Space Science Division, Naval Research Laboratory, Washington, DC, USA
- ² Marine Meteorology Division, Naval Research Laboratory, Monterey, California, USA
- ³ Computational Physics, Springfield, Virginia, USA
- 4 NASA Goddard Space Flight Center, Greenbelt, Maryland USA

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

- 1. Gravity-Wave Detection in Nadir Radiance Scene
- 2. Pre DEEPWAVE Climatologies
- 3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
- 4. Additional Data/Issues for DEEPWAVE Field Phase

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

- 1. Gravity-Wave Detection in Nadir Radiance Scene
- 2. Pre DEEPWAVE Climatologies
- 3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
- 4. Additional Data/Issues for DEEPWAVE Field Phase

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Satellite GW Product: Executive Summary

- Gravity waves (GWs) are an "accidental detection" in nadir radiances
- First noted ~5-7 years ago as a result of advances in nadir sounding technology, particularly:
 - Improved footprint (horizontal) resolution (\sim 100 km \rightarrow \sim 10 km): horizontal wavelength
 - Improved precision and reduced noise in radiometric detection channels (NEDTs ~ 0.1-0.5 K): wave amplitude
 - Hyperspectral imagery (more channels → height profiles)
- We have crude forward RT models of GW detection in nadir imagery
 - Partial detection only, and most GWs are not observed at all
 - Fails in the troposphere due to cloud moisture contamination
 - GW detectability changes as background winds vary, making separation of geophysical and instrumental signals tricky

Variation of Gravity-Wave Vertical Wavelength with Winds

$$\lambda_Z = \frac{2\pi |c - \bar{U}\cos(\varphi - \phi)|}{N} \propto \bar{U}$$

 φ wind vector azimuth

wave vector azimuth

 λ_z gravity-wave vertical wavelength

c gravity-wave phase velocity ($c \approx 0$)

N background buoyancy frequency

background wind speed

AIRS 40 hPa Radiance Channels

AIRS channels 64, 88, 90, 94, 100, 106 & 118 (665.015–678.839 cm⁻¹)

Individual Channel Radiances 64,...,118

Mean Channel Radiance 64,..,118

AIRS channel 71 (666.773 cm⁻¹).

see Hoffmann and Alexander (JGR, 2009) Eckermann et al. (GRL 2009)

- 1. Gravity-Wave Detection in Nadir Radiance Scene
- 2. Pre DEEPWAVE Climatologies
- 3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
- 4. Science Motivation and Goals

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

RMS AIRS Radiance: 7 hPa

Hemispheric Perspective

- Broad band of enhanced variance over Southern Ocean
- Clearly nonorographic sources
- Well correlated with midlatitude spiral jet

Hendricks et al. J. Atmos. Sci., in press, 2014.

0.340

0.135 0.237

0.442

0.545 0.647 0.750

Greater Australia/New Zealand Region

Southern Ocean to Antarctica

- 1. Gravity-Wave Detection in Nadir Radiance Scene
- 2. Pre DEEPWAVE Climatologies
- 3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
- 4. Additional Data/Issues for DEEPWAVE Field Phase

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Slide 17

- 1. Gravity-Wave Detection in Nadir Radiance Scene
- 2. Pre DEEPWAVE Climatologies
- 3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
- 4. Additional Data/Issues for DEEPWAVE Field Phase

- 1. The Office of Naval Research (ONR) through NRL's base 6.1 research program
- 2. NASA, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

DEEPWAVE Field Phase Issues

Backup Nadir Data Sources Besides AIRS

- AIRS launched 2002 (could die) + AIRS NRT data stream sometimes goes down
- we plan to also use operational CrIS radiances from NPP (downloads large & slow)
- Microwave Nadir Sounders (footprint resolution ~3 times larger)
 - AMSU on Aqua and NOAA-15 ... NOAA-19 (12 overpasses/day)
 - SSMIS on DMSP-15 ... 19 (up to ~90 km but Zeeman splitting complicates radiances)

Limb Sounders

- MLS, SABER, GPS occultations (I don't plan to study/monitor these in-field)
- common volume predictions would need to monitor limb viewing geometries, yaws etc.

Predictions of Overpass Time-Locations for NGV common volume data

- NRLDC investigating data catalogue uploaded based on getting an NRL "seat" in Satellite Toolkit to generate a time series for June-July 2014 (data might also come from NRL MRY)

Data Uploading/Processing for Field Mission

- data volumes far too large to do in field, need scripts running back in NRLDC
- NRLDC security/access issues heavily complicate transfer imagery from/to field
- plan to have redundant versions running at other sites (e.g., CPI, NRLMRY, elsewhere?)

Weighting Functions: Operational Microwave Nadir Sounders

Channel 9 AMSU-A EOS Aqua 1229 UTC

SOLVE-II DC-8 Flight of 14 January

Photo from the NASA DC-8 of mountain wave PSCs over south-western Scandinavia on 14 January 2003 (courtesy Paul Newman, NASA GSFC)

Mountain Wave PSCs

Aerosol Backscatter Coefficients (ABR) from NASA Langley Lidar on DC-8

AMSU-A Channels 9-14 Radiances:

14 January 2003

Specific Science Questions for DEEPWAVE

Question: Which stratospheric gravity waves are and are not resolved in satellite imagery?

<u>Closure</u>: Coincident "ground truth" NGV deep GW measurements during satellite overpasses, forward modeled into satellite radiances

Question: What are the origins of rich variable 3D GW structures seen in satellite GW swath imagery in the DEEPWAVE RAO?

Closure: DEEPWAVE NGV measurements and detailed 3D modeling

Questions: What are the dominant sources of GWs in DEEPWAVE RAO? What are the relative flux contributions of GWs of various sources to the stratospheric circulation and climate?

<u>Closure</u>: DEEPWAVE NGV measurements, detailed 3D modeling and parameterization

Backup Slides follow....