S.D. Eckermann¹, J. D. Doyle², J. Ma³, E. A. Hendricks², Q. Jiang², P. Reinecke², D. L. Wu⁴

¹ Space Science Division, Naval Research Laboratory, Washington, DC, USA

² Marine Meteorology Division, Naval Research Laboratory, Monterey, California, USA

³ Computational Physics, Springfield, Virginia, USA

4 NASA Goddard Space Flight Center, Greenbelt, Maryland USA

we gratefully acknowledge support for this research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua Slide 1

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Additional Data/Issues for DEEPWAVE Field Phase

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA,** through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Additional Data/Issues for DEEPWAVE Field Phase

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Satellite GW Product: Executive Summary

- Gravity waves (GWs) are an "accidental detection" in nadir radiances
- First noted ~5-7 years ago as a result of advances in nadir sounding technology, particularly:
 - Improved footprint (horizontal) resolution (~100 km \rightarrow ~10 km): horizontal wavelength
 - Improved precision and reduced noise in radiometric detection channels (NEDTs ~ 0.1-0.5 K): wave amplitude
 - Hyperspectral imagery (more channels \rightarrow height profiles)
- We have crude forward RT models of GW detection in nadir imagery
 - Partial detection only, and most GWs are not observed at all
 - Fails in the troposphere due to cloud moisture contamination
 - GW detectability changes as background winds vary, making separation of geophysical and instrumental signals tricky

Variation of Gravity-Wave Vertical Wavelength with Winds $\lambda_{Z} = \frac{2\pi \left| c - \overline{U} \cos \left(\varphi - \phi \right) \right|}{N} \propto \overline{U}$

- φ wind vector azimuth
- φ wave vector azimuth
- λ_z gravity-wave vertical wavelength
- c gravity-wave phase velocity ($c \approx 0$)
- *N* background buoyancy frequency
- *U* background wind speed

AIRS 40 hPa Radiance Channels

Slide 6

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase
Science Motivation and Goals

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

RMS AIRS Radiance: 7 hPa

Hemispheric Perspective

- Broad band of enhanced variance over Southern Ocean
- Clearly nonorographic sources
- Well correlated with midlatitude spiral jet

Hendricks et al. J. Atmos. Sci., in press, 2014.

Slide 10

Southern Ocean to Antarctica

Asc+Des 2 hPa

60 80

60 80

60 80 100

days

South Island

days

Asc+Des 40 hPa

days

Asc+Des 7 hPa

Slide 12

DeepWave

DeepWave

DeepWave

Aug

\uq

days

80

80 100

days

days

Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies

3. Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase

4. Additional Data/Issues for DEEPWAVE Field Phase

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA**, through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

Slide 17

 Gravity-Wave Detection in Nadir Radiance Scene
Pre DEEPWAVE Climatologies
Proof-of-Concept Nowcasting/Validation during DEEPWAVE Practice Field Phase

4. Additional Data/Issues for DEEPWAVE Field Phase

we gratefully acknowledge support for this satellite research (leveraging participation in DEEPWAVE science) by: **1. The Office of Naval Research (ONR)** through NRL's base 6.1 research program **2. NASA,** through a research grant under AO NH09ZDA001N-TERRAQUA: The Science of Terra and Aqua

DEEPWAVE Field Phase Issues

Backup Nadir Data Sources Besides AIRS

- AIRS launched 2002 (could die) + AIRS NRT data stream sometimes goes down
- we plan to also use operational CrIS radiances from NPP (downloads large & slow)
- Microwave Nadir Sounders (footprint resolution ~3 times larger)
 - AMSU on Aqua and NOAA-15 ... NOAA-19 (12 overpasses/day)
 - SSMIS on DMSP-15 ... 19 (up to ~90 km but Zeeman splitting complicates radiances)

Limb Sounders

- MLS, SABER, GPS occultations (I don't plan to study/monitor these in-field)
- common volume predictions would need to monitor limb viewing geometries, yaws etc.

Predictions of Overpass Time-Locations for NGV common volume data

- NRLDC investigating data catalogue uploaded based on getting an NRL "seat" in Satellite Toolkit to generate a time series for June-July 2014 (data might also come from NRL MRY)

Data Uploading/Processing for Field Mission

- data volumes far too large to do in field, need scripts running back in NRLDC
- NRLDC security/access issues heavily complicate transfer imagery from/to field
- plan to have redundant versions running at other sites (e.g., CPI, NRLMRY, elsewhere?)

Channel 9 AMSU-A EOS Aqua 1229 UTC

SOLVE-II DC-8 Flight of 14 January

2003

Photo from the NASA DC-8 of mountain wave PSCs over south-western Scandinavia on 14 January 2003 (courtesy Paul Newman, NASA GSFC)

Mountain Wave PSCs

Aerosol Backscatter Coefficients (ABR) from NASA Langley Lidar on DC-8

AMSU-A Channels 9-14 Radiances:

14 January 2003

time Slide 24

pressure (hPa)

Specific Science Questions for DEEPWAVE

- <u>Question</u>: Which stratospheric gravity waves are and are not resolved in satellite imagery?
- <u>**Closure</u>**: Coincident "ground truth" NGV deep GW measurements during satellite overpasses, forward modeled into satellite radiances</u>
- **Question**: What are the origins of rich variable 3D GW structures seen in satellite GW swath imagery in the DEEPWAVE RAO?
- **<u>Closure</u>**: DEEPWAVE NGV measurements and detailed 3D modeling
- **Questions**: What are the dominant sources of GWs in DEEPWAVE RAO? What are the relative flux contributions of GWs of various sources to the stratospheric circulation and climate?
- <u>**Closure</u>**: DEEPWAVE NGV measurements, detailed 3D modeling and parameterization</u>

Questions?

Backup Slides follow....