Contributions to DEEPWAVE-NZ from the DLR

Andreas Dörnbrack Hans Schlager, Markus Rapp, Bernd Kaifler, et al.

> DLR Oberpfaffenhofen Institut für Physik der Atmosphäre

DLR contribution integrated in the BMBF Research Initiative:

Role of the Middle atmosphere In Climate (ROMIC)

by the project "Investigation of the life cycle of gravity waves (GW-LCYCLE)"

ROMIC - Field Campaigns

(1) GW-LCYCLE I

- 2 14 December 2013, Kiruna, Sweden
- DLR Falcon
- simultaneous 3 hourly radiosonde launches along a West-East section from Andøya (N), Esrange (S) to Sodankylä (FIN) during 3 IOPs
- ground-based observations at ALOMAR (radars, lidars) and at Esrange (Lidar)

(2) DEEPWAVE-NZ (DLR contribution)

- total period: 6 June 22 July 2014, New Zealand
- DLR Falcon participation: 22 June 14 July 2014
- ground-based observations (Na-Lidar, radiosondes)

(3) POLSTRACC/GW-LCYCLE II

- winter 2015/2016, Kiruna, Sweden
- coordinated flights of HALO and Falcon
- simultaneous 3 hourly radiosonde launches along a West-East section from Andøya (N), Esrange (S) to Sodankylä (FIN)
- ground-based observations at ALOMAR (radars, lidars) and at Esrange (Lidar, radar)

(1) Scientific Interest in DEEPWAVE-NZ

- o gravity excitation by the flow over the New Zealand mountain range
- \circ gravity wave propagation from the troposphere to the mesosphere
- \circ gravity wave modification across the tropopause
- dynamical and chemical processes in the upper troposphere lower stratosphere (StratTrop exchange)

(2) Specific DLR contributions

(a) Falcon observations

- deployment from June 22 until July 14 2014
- about 60 h for research flights
- combined remote-sensing and in-situ payload of wind, temperature and various trace gases (H₂O, O₃, CH₄, CO, CO₂, N₂O, SO₂)

(b) Ground-based observations

- Sodium-Rayleigh-Brillouin-Raman Lidar (Na-RBR Lidar) at Lauder
- radiosonde launches in the lee of the southern Alps at Lauder
- (c) Forecast support (ECMWF-IFS, WRF driven by ECMWF-IFS)

Falcon observations - Payload

Falcon observations - Contributions

Flight level measurement of vertical momentum and energy flux and of various trace gases (H_2O , O_3 , CH_4 , CO, CO_2 , N_2O , SO_2)

- $\,\circ\,\,$ at altitudes from 4 to 11 km, below the NG V,
- \circ on parallel tracks to the NG V tracks, and
- $\circ~$ on shorter tracks than the long 400 km NG V tracks.

Disturbed wind field and gravity waves over the S. Alps terrain using the 2 μm Doppler wind lidar system underneath the Falcon

Mapping out the cloud field over the S. Alps using the backscatter intensity of the down-looking lidar. Cloud mapping is important as clouds may alter the generation of vertically propagating gravity waves. Expected cloud types include

- $\circ~$ Lenticular (liquid or ice) clouds
- Undulating alto-stratus
- Shallow convective clouds

Falcon observations - Contributions

Falcon observations - Contributions

Amplitudes – Flight 1

Radiosonde Launches from Lauder DLR, LMU Munich, Innsbruck University

(1) Väisälä radiosonde station of the LMU Munich

60 .. 80 sondes with 600 g balloons

(2) GRAW radiosonde station of the University of Innsbruck 20 sondes with 600 g balloons

Purposes:

- the determination of wind, temperature and humidity from the surface up to about 30 km altitude
- the determination of the tropopause height
- the characterization of gravity waves in the troposphere and stratosphere

Different **launch techniques** can be applied in coordination with the other Radiosonde stations deployed during DEEPWAVE-NZ

- simultaneous launches of two balloons with different gas fillings
- series of balloon launches every 90 min or 180 min during IOPs

Sodium-Rayleigh-Brillouin-Raman Lidar (Na-RBR)

Transmitter

0.5 W at 589 nm (Sodium resonance) 10 W at 532 nm

100 Hz reprate Bandwidth <100 MHz

Receiver

- 1 Channel at 589 nm
- 1 Raman channel at 608 nm
- 2 Channels at 532 nm
- 1 Rayleigh-Brillouin channel

Na-RBR Lidar

Operation	Ground based system; remote/autonomous operation Real-time data analysis, quicklook plots on webpage
Metal	Sodium (589 nm wavelength)
Measurements	Temperature (5-105 km) Sodium density (80-105 km) One horizontal wind component (80-105 km) Aerosol (5-35 km)
Resolution	2 km, 15-60 min depending on altitude; 1-2 km, 20 min within metal layer
Observations in daylight	Currently not planned, degraded performance in daylight conditions
Output power	0.5 W at 589 nm, 10 W at 532 nm
Telescope aperture	63 cm
Field of view	365 microrad (sodium), 200 microrad (Rayleigh/Raman)

Modelling/Forecast Capabilities

(1) ECMWF IFS

(provided by DLR)

- two runs 00 UTC and 12 UTC available, 1 hourly forecasts until lead time +72 h, 3 hourly fcs afterwards until +240 h
- 137 layers up to 0.01 hPa, ~16 km horizontal resolution
- various fields (U, V, W, T, RH, PRECIP, DIV, VOR, PV maps,...) on pressure levels and on selected vertical cross-sections visualized on: <u>www.pa.op.dlr.de/missionsupport/classic/forecasts</u>

(2) WRF driven by ECMWF IFS (Innsbruck University)

- two runs driven by 00 UTC and 12 UTC IFS forecasts
- nested simulations with 6 km resolution and $z_{\text{TOP}} \sim 50$ km
- similar fields as ECMWF IFS plus TKE and non-hydrostatic vertical wind visualized on: <u>www.pa.op.dlr.de/missionsupport/classic/forecasts</u>

(3) COSMO (Bundeswehr Geoinformation Service, Rene Heise) 2.8 km runs to provide vertical wind, eddy dissipation rate and TKE

IOP5 Flight 1: in-situ \Leftrightarrow WRF

GW-LCYCLE Kiruna DLR Oberpfaffenhofen

Stratospheric "Wave Soup" only occassionally excited by flow over topography (Examples from GW-LCYCLE 2013)

DIV (10^-5 s^-1, pos.: red, neg.: blue, Delta=4.) and Z (m) at 3hPa Valid: Fri, 13 Dec 2013, 12 UTC (step 084 h from Tue, 10 Dec 2013, 00 UTC)

Divergence (10^-5 s^-1), Potential Temperature (K), Temperature (K) Valid: Fri, 13 Dec 2013, 12 UTC (step 084 h from Tue, 10 Dec 2013, 00 CTC)

