Reversible and Irreversible Mountain Wave Momentum Deposition in Sheared Environments

Christopher G. Kruse and Ronald B. Smith

Primary Research Questions:

- How do initially linear mountain waves (MWs) propagate, breakdown, and influence their environment in a MW event?
 - Influences of vertical shear? Scale?
- 2. How important is reversible GWD by MWs?
- 3. In what ways might GWD parameterizations be improved?

MF, GWD, and ΔU

• Time Integrated Gravity Wave Drag per unit mass (GWD) gives the mean flow reduction:

$$\frac{\partial \rho u}{\partial t} + \frac{\partial}{\partial x} \left(\rho u^2 + p\right) + \frac{\partial (\rho u w)}{\partial z} = 0$$

$$\overline{(\cdot)} = \frac{1}{L} \int_{-\infty}^{L} (\cdot) dx \qquad \overline{u} = U$$
Considering models periodic in x!
$$\frac{\partial U}{\partial t} = -\frac{1}{\overline{\rho}} \frac{\partial MF}{\partial z} = GWD$$

$$\Delta U(z, t) = \int_{0}^{t} -\frac{1}{\overline{\rho}} \frac{\partial MF}{\partial z} dt'$$

Reversible and Irreversible ΔU

- In MW events, MWs interact with their environment both reversibly and irreversibly
- Reversible (Non-Dissipative) $\Delta U = \Delta U_{rev}$:
 - Mean flow reduction that occurs as MWs propagate into a previously undisturbed flow
 - If MW forcing finite in time and MWs do not dissipate, MWs return ambient flow back as they propagate out of the layer; hence, this interaction is reversible
- Irreversible (Dissipative) $\Delta U = \Delta U_{irr}$:
 - Mean flow reduction that occurs as MWs dissipate/break, which irreversibly alters the mean flow

 $\Delta U = \Delta U_{rev} + \Delta U_{irr}$

Tools

- 1. Non-Linear Model: WRF
 - Resolves waves and their non-linear breakdown
 - **Periodic domain** allows diagnosis of **total** $\Delta U = \Delta U_{rev} + \Delta U_{irr}$
- 2. Linear Model: Fourier Ray (Broutman et al. 2002)
 - Spectral, quasi-transient, non-coupled/steady background
 - Allows diagnosis of **reversible** $\Delta U = \Delta U_{rev}$
- 3. Saturation Parameterization: Lindzen Type (Lindzen 1981, McFarlane 1987)
 - Monochromatic, instantaneous propagation, waves not allowed to reach overturning amplitude (wave saturation)
 - Gives estimate of **irreversible GWD**, ΔU_{irr} in most coarse models

WRF Fourier Ray Param
$$\Delta U = \Delta U_{rev} + \Delta U_{irr}$$

Linear Fourier Ray Model

• Compute ray solution in Fourier space, then invert

$$\hat{\eta}(k,z) = \left(\frac{\overline{\rho}_0}{\overline{\rho}(z)}\right)^{1/2} \hat{h}(k) \left[\frac{c_{gz_0}(k)}{c_{gz}(k,z)} \frac{U(z)}{U_{0_m}}\right]^{1/2} e^{i\int_0^z m(k,z')dz'}$$
Eckermann et al. 2015

$$\eta(x,z,t) = \int_{-\infty}^{\infty} F_{sfc}(t-t_{prop}(k,z))\hat{\eta}(k,z)e^{ikx} dk$$

$$F_{sfc}(t) = \frac{U_0(t)}{U_{0_m}} \qquad t_{prop}(k,z) = \int_0^z \frac{dz'}{c_{gz}(k,z')}$$

- Terrain, \dots , provides scales and z = C amplitudes
- Wave action conservation and density modify these amplitudes in altitude
- Quasi-Transient:
 - $c_p = 0$ for all scales
 - Transience due to Surface Forcing, $F_{sfc},$ which takes into account c_{gz} spectrum and arbitrary cross-barrier flow function, $U_{0}(t)$
- Evanescent, reflected waves neglected
- Waves NOT coupled to ambient flow

Idealized Terrain $h(x) = \begin{cases} 0.5h_m(1 + \cos(kx)) &, & |x| \le d \\ 0 &, & |x| > d \end{cases}$

- $k = \pi/d, d = 100 \text{ km}$
- h_m : max terrain height - $h_m = 50 \text{ m}, 500 \text{ m}$
- Compact Terrain: results in a broad(-ish) spectrum

Domains, Event Forcing

- Setup
 - 2-D
 - Horizontally Periodic
 - Constant N = 0.02 s⁻¹
 - -f = 0
 - Inviscid
- MW Event Forcing (12 hr)
 - WRF: Wind in lowest 5 km uniformly accelerated from zero to desired profile in 20 minutes, allowed to evolve for 12 hours, then decelerated back to zero
 - FR, GWD Parameterization: Same surface-level winds as WRF

WRF

Fourier Ray

No Shear, $h_m = 50 \text{ m}$

WRF

Fourier Ray

No Shear, $h_m = 50 m$

No Shear, $h_m = 50 \text{ m}$

No Shear, $h_m = 50 m$

- MW generation produces non-dissipative MF gradient initially
- Spectrum and c_{gz} dispersion spread MF profiles vertically in time
 - Long waves propagate up slowly, short waves quickly

- MW generation produces non-dissipative MF gradient initially
- Spectrum and c_{gz} dispersion spread MF profiles vertically in time
 - Long waves propagate up slowly, short waves quickly

- MF maximum associated low-level deceleration at end of event in WRF
 - Low-level wave field suddenly travelling upstream ($c_p \approx -30$ m/s)
 - Termed "travelling wave MF maximum" here
 - Physics of this feature not fully understood yet
 - Not present in FR solutions because of $c_p = 0$ constraint
- Other than the travelling wave feature, good quantitative agreement between WRF and FR

Shear Effects on MF Evolution

• Positive (negative) shear spreads (compresses) MF_x in vertical

ΔU_{rev} in Fourier Ray Solutions

- ΔU_{rev} can be computed in two equivalent ways:
- 1. From the time integral of MF gradient:
- $\Delta U = \int_0^t -\frac{1}{\overline{\rho}} \frac{\partial MF}{\partial z} dt'$ 2. Or, simply from the MF present: $MF = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{MF}(k) dk$

$$\Delta U_{rev}(z,t) = \frac{1}{2\pi\overline{\rho}} \int_{-\infty}^{\infty} \frac{\widehat{MF}}{c_{gz}} dk$$

- Follows from Parseval's theorem + linear theory, or alternatively Stokes' Theorem (Sutherland 2010)
- Used the 2^{nd} spectral method to compute ΔU_{rev} in the Fourier Ray solutions

ΔU_{rev} Evolution

• Is non-dissipative ΔU reversible? Yes, but can take several days

WRF

Fourier Ray

WRF

Fourier Ray

 $h_{m} = 500 m$

Fourier Ray

h_m = 500 m

Fourier Ray

h_m = 500 m

ΔU Evolution with Breaking Substantial ΔU_{rev} (5-10 m/s) prior to breaking

MW Drag Parameterization

- Assumptions: Monochromatic (λ_x=200km), instant propagation, wave amplitude saturates, steady ambient (ΔU_{rev}=0), vertical propagation only, 2-D, hydrostatic, no lateral variations...
- 1. Determine MF (next slide), u' amplitude at surface
- 2. Determine u' amplitude, MF at next model level
 - Compute u' amplitude above via MF conservation
 - If u'<= U(z): no dissipation, $\Delta MF/\Delta z = 0$
 - If u'> U(z): set u'=U(z), compute new MF
- 3. Iterate up through all model levels

4. 10-km Vertical Moving Avg Smoother Applied to MF(z)

- Necessary! Enforces vertical scale of dissipation.
- 5. $\Delta MF/\Delta z$, $\rho(z)$ used to compute GWD

MW Parameterization Domain

• Average surface MF computed from full terrain spectrum:

$$MF_0 = -\frac{\overline{\rho}_0 N U_0}{4\pi L} \int_{-\infty}^{\infty} \left(1 - \frac{U^2 k^2}{N^2}\right)^{1/2} |k| |\hat{h}|^2 dk$$

- Applied to parameterized wave over inner 200 km "grid cell" for amplitude

- Parameterized momentum deposition applied to entire domain width
- That is, same MF out of domain as WRF and same initial momentum profile as WRF

WRF, Parameterization MF Comparison

• Parameterization: No delay; larger MF aloft

WRF, Parameterization ΔU_{irr} Comparison Substantial ΔU_{rev} (5-10 m/s) prior to breaking

•

Sat. MF Deposition: Dependent on Shear

• Saturation Assumption results in MF deposition dependent upon ambient vertical wind shear:

$$MF_{s} = -\frac{\overline{\rho}k}{2N}U^{3}$$
$$\frac{dMF_{s}}{dz} = -\frac{k}{2N}\left(3\overline{\rho}U^{2}\frac{dU}{dz} + U^{3}\frac{d\overline{\rho}}{dz}\right)$$

- Negative shear develops at z_{break}, which causes stronger momentum deposition, further increasing shear, ...
 - Solution blows up after some time; strongly dependent upon vertical resolution
- Apply 10-km ($\approx \lambda_z$) vertical running average smoother to MF force a dissipation scale
- This allows downward communication of attenuation, descending critical level dynamics Probably skip for time

Influence of Event Duration

- Lowest dissipation level decreases with increasing event duration
 - Longer durations allow fuller wave spectrum aloft, increasing wave amplitudes
- Monochromatic, instantaneous parameterization assumptions eliminate this

Conclusions

- A finite duration MW forcing causes non-dissipative vertical gradients in MF ΔU_{rev}
- C_{gz} spectrum controls spectral evolution aloft (at least initially)
 - Spreads MF profiles vertically, impacts ΔU_{rev}
 - Causes temporally asymmetric response in linear cases;
 can take days to recover because of slow long waves
- ΔU_{rev} can be substantial (5-10 m/s) prior to wave breaking; ΔU_{irr} dominates, increases with event duration/impulse
- Parameterization errors are large, dependent upon ambient wind profile

Parameterization Comments

- Parameterization Assumptions
- 1. Instantaneous
 - Could be relaxed, but only useful if 2. relaxed as well
- 2. Monochromatic
 - Could be relaxed, but only useful if 1. relaxed as well
- 3. Steady Background ($\Delta U_{rev}=0$)
 - Might give more accurate breaking levels if relaxed
- 4. Saturation Assumption
 - Can under or over predict MF deposition significantly depending on ambient wind profile!
- Think relaxing 1. and 2. together will result in better performance. Applying saturation spectrally is tricky.

WRF, Param Domain Momentum Reduction

• Want to make time series plots of domain (x and z) integrated x-momentum for comparison.

