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Goals

- quasi-realistic numerical simulations of the flow across NZ and 
Auckland Islands from the surface to the mesosphere @ about 100 
km

- understanding of the vertical propagation under 

        o different forcing conditions in the troposphere

        o different stratospheric conditions for propagation

- compare with linear dynamics by conducting quasi-linear‘ simulations

- try to reproduce the observed ‚broad spectra‘ and to understand the 
processes causing them



Methods

- 2D (later 3D) numerical simulations with EULAG (multiscale 
geophysical flow solver) integrating different approximations of the 
Navier-Stokes equations:

    o compressible , pseudo-incompressible, anelastic, linearized 
versions

    o inviscid

    o lateral wave absorber

    o vertical: exponentially increasing Rayleigh friction 

- realistic topography along the mountain transects Mt Aspiring and 
Mt. Cook (taken from GV-data set)

- initial wind, potential temperature, density profiles:

     o ECMWF IFS up to 80 km altitude

     o NAVGEM up to 100 km altitude



Eckermann, S., D. Broutman, J. Ma, J. Doyle, P. Pautet, M. Taylor, K. Bossert, B. Williams, D. Fritts, and R. Smith, 2016: 
Dynamics of Orographic Gravity Waves Observed in the Mesosphere over the Auckland Islands during the Deep 
Propagating Gravity Wave Experiment (DEEPWAVE). J. Atmos. Sci., 73, 3855–3876, doi: 10.1175/JAS-D-16-0059.1. 

Auckland Case RF23 14 July 2014 
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Vertical Profiles  14 July 2014 06 UTC



A
B
C
D
E
F
G
H
I
J
K

200 m horizontal resolution from 
the ASTER (on NASA’s Terra 
satellite) global digital elevation 
model

Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) Terrain Elevation



Section G (250)



t = 0 min 



t = 6 min 
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t = 90 min 
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t = 120 min 



EULAG Simulations for Auckland Case RF23

- good agreement of simulated horizontal wavelength with 
observed wavelength and solutions from Fourier Ray Modelling – 

    until breaking sets in: really dominant linear dynamics
 
- breaking happens in gigantic rolls which sit like rotors on the 

underlying waves – mesospheric rotors: 
      o steep, deeply penetrating nonhydrostatic gravity waves act like 
         elevated, quasi-stationary mountains producing „downslope  
         wind storms“
      o generate broad warm anomalies (Foehn, Chinook) and narrow 
         cold anomalies like fronts (hydraulic jumps); see Mike‘s talk 
yesterday

- inviscid 2D simulations certainly overestimate w and T‘ but the 
code is very robust to simulate the deep dynamics properly

- strong dependency of upper air dynamics (z > 60 km) on initial 
and background profiles



100 km

 10 km

   5 km

   1 km

 altitude
Mesospheric Rotors



RF05 16 June 2014 
- why RF05?? 

(1) Smith & Kruse (2017) show observed broad spectra but no 
simulations – „ … one of the most rugged terrains in the 
world. Small-scale relief exceeds 1 km in the high 
mountain areas (Korup et al. 2005). This roughness 
broadens the terrain spectrum and the associated wave 
spectra found in the atmosphere.” 

Is the rougged terrain alone responsible for the broad spectra?
Are these short waves observational artifacts? Do we understand 
their origins?





RF05 16 June 2014 
- why RF05?? 

(1) Smith & Kruse (2017) show observed broad spectra but no 
simulations – Are these short waves observational artifacts? Do 
we understand the origin? „ … one of the most rugged terrains 
in the world. Small-scale relief exceeds 1 km in the high 
mountain areas (Korup et al. 2005). This roughness broadens 
the terrain spectrum and the associated wave spectra found in 
the atmosphere.” 

(2) GV-Summary (by Ron): „ …The pattern of waves across the 
island was very repeatable leg after leg. Near 170E, the 
UIC drops from about 20m/s to 10m/s, slight turbulence is 
found and short wave train begins. Typical amplitude of the 
vertical velocity in the wave train was 2 m/s. The 
wavelength was about 10km. It extends usually all the way 
to the east end of the leg. It is the longest wave 
oscillation I have ever seen on the atmosphere with about 
30 full oscillations.  Over the ridge crest, there were 
longer non-periodic waves that were probably vertically 
propagating. …”



26

Comparison to observations and other models

NCAR: VSPD

NCAR: WIP 

Chris Kruse

Andreas 
Dörnbrack, 
preliminary

Ulrich Schumann (presentation given 20 July at DLR, see next talk)



EULAG Simulations

- initial/background profiles: ECMWF upstream profiles 06, 07, …., 13 UTC

- inviscid, compressible runs

- dx=500 m, dz=200 m, dt=0.5 s

- simulation time 12 h

- smooth and rough topographies of Mt Cook 1b

- ongoing: sensitivity studies (absorber, Rayleigh damping time scale, 

resolution, set of equations, vertical coordinate transformations, …) 



ECMWF IFS Upstream Profiles  16 June 2016 12 UTC

thick black line: u

thin black line:   vH 

red line:    uROT1 (magnitude of positive u∥ and v∥ with 300° along track direction)

blue line:  uROT2  (wind direction turns from 320° to 270° in the lowest 10 km)



ECMWF IFS Upstream Profiles  16 June 2016 12 UTC

thick black line: u

thin black line:   vH 

red line:    uROT1 (magnitude of positive u∥ and v∥ with 300° along track direction)

blue line:  uROT2  (wind direction turns from 320° to 270° in the lowest 10 km)
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 16 June 2014 Init: 09 UTC (+ 12 h)



 16 June 2014 Init: 09 UTC (+ 10 h)



 16 June 2014 Init: 09 UTC (+ 7 h)



 16 June 2014 Init: 09 UTC (+ 3 h)



EULAG u-field every 360 s for 12 h 
started at  16 June 2016 12 UTC



EULAG u-field every 360 s for 12 h 
started at  16 June 2016 12 UTC



EULAG u-field every 360 s for 12 h 
started at  16 June 2016 12 UTC

PNJ



EULAG w-field every 360 s for 12 h 
started at  16 June 2016 12 UTC

PNJ



t = 60 min – linear phase of wave propagation

PNJ



t = 90 min – excitation of stratospheric wave trains

PNJ



t = 90 min – excitation of stratospheric wave trains

PNJ

primary breaking region



t = 90 min – excitation of stratospheric wave trains

PNJ

primary breaking region



t = 90 min – excitation of stratospheric wave trains

PNJ

primary breaking region trapped wave train



t = 138 min – ceased, almost linear stratospheric wave field

PNJ



t = 540 min – sporadic appearance of mesospheric rotors

PNJ



Prusa et al 1989 Bacmeister and Schoeberl 
1989



Schoeberl, M., 1985: The 
penetration of mountain 
waves into the middle 
atmosphere, J. Atmos. Sci. 42, 
2856-2864



OH-band emission
2004.06.13
1125-1717 UT

- estimated wave parameters - 

horizontal wavelength:

wave period:                

phase speed:              

propagation direction: 

Simultaneous MLT gravity wave event

33.4 ±4.9 km

13.4 ±2.9 min

42.8 ±7.4 m/s

Northward

13.4 ±3.7 deg

S. Suzuki et al., AGU Fall Meeting 2012 

* projection height: 85km



Dynamics in the upper stratosphere and mesosphere

-  deep vertical propagation of non-hydrostatic gravity waves

- waves trapped in the vicinity of the polar night jet (PNJ) and 
underneath the stratopause – totally different appearance of 
wave fronts compared to uniform wind & uniform stability 
simulations

- horizontally and vertically propagating waves above the PNJ

- sporadic wave breaking between strong up- and downdrafts 
(mesopheric rotors)

- very rapid change of middle atmospheric wave field in 12 h 
simulation time



SP

TP

   

Internal Reflection of gravity waves 

 33 km 

 15 km  

Schoeberl, 1985

Dynamics in the upper stratosphere and mesosphere



Dynamics in the 
upper troposphere and lower stratosphere (UTLS)

o analyse rough and smoothed Mt. Cook 1b topography runs:

o show power spectra of u, w, and T at z=12 km along leg 11 of 
RF05 at one selected time



ECMWF IFS Upstream Profiles  16 June 2016 12 UTC

thick black line: u

thin black line:   vH 

red line:    uROT1 (magnitude of positive u∥ and v∥ with 300° along track direction)

blue line:  uROT2  (wind direction turns from 320° to 270° in the lowest 10 km)
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16 June 2016, Init: 12 UTC (+420 min)
z = 12 km

Mt Cook 1b – Rough
EULAG run



16 June 2016, Init: 12 UTC (+420 min)
z = 30 km

Mt Cook 1b – Rough
EULAG run



Schoeberl, 1985



What about the roughness of NZ‘s 
terrain?



Mt Cook 1b



Mt Cook 1b - Smoothed



16 June 2016, Init: 12 UTC (+420 min)
z = 12 km

Mt Cook 1b – Smooth
EULAG run



16 June 2016, Init: 12 UTC (+420 min)
z = 12 km

Mt Cook 1b – Rough
EULAG run



Dynamics in the 
upper troposphere and lower stratosphere

- EULAG simulations reproduce observed broad mountain wave 
spectrum with w-peaks at around 7 km (~ cut-off wavelength) 
and long-wavelength power in u and T 

      ➜ observed peaks in the w-spectrum are realizable in   
          high-resolution numerical simulations 

- roughness of the terrain does not seem to have an 
overwhelming impact on the spectra in the UTLS 

       ➜ wind filtering dominates the wavelength selection 

AND/OR

      ➜ wave trapping and interference with waves propating up- 
and  
          downwards through the UTLS are the essential ingredients 
          producing the observed spectra 
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