Gravity Wave Parameterizations in the NCAR CESM

Julio Bacmeister, Peter Lauritzen, Patrick Callaghan, Jerry Olson NCAR

DEEPWAVE Workshop, New Haven CT, 8 August 2017

Overview

- Background WACCM/CAM/CESM
- New Developments for GWP
 - Ancillary topography files
 - Anisotropic/blocking scheme
- Results
 - AMIP runs
 - DART assimilation runs to assess parameterization
- Future Directions

WACCM, CAM, CESM ..., CCSM, CSM, ... ??

CESM=Community Earth System Model

WACCM, CAM, CESM ..., CCSM, CSM, ... ??

Atmosphere model (CAM or WACCM)

- CAM=<u>C</u>ommunity <u>A</u>tmosphere <u>M</u>odel
- WACCM=<u>W</u>hole <u>A</u>tmosphere <u>C</u>ommunity <u>C</u>limate <u>M</u>odel
- CAM: model top at ~2hPa (~45km). Poorly resolved stratosphere. Simplified chemistry.
- WACCM: model top ~110km. Non-LTE, ions, ...
- Both CAM and WACCM are run fully-coupled (w/ dynamic ocean) or in stand-alone (w/ prescribed sea-surface temperatures)
- CAM and WACCM are (nearly) the same model below 45km, although WACCM has usually been a version or two behind in the troposphere. *Trying to change this in CESM2*.
- CAM GWP includes only orographic source. WACCM GWP has frontal and convective sources as well.
- Typical horizontal resolution for long integrations: 100km

Model	CAM3 CCSM3	CAM4 CCSM4	CAM5 CESM1.0	CAM5.2 CESM1.1	CAM6 CESM2
Release	Jun 2004	Apr 2010	Jun 2010	Nov 2012	Sometiime 2017
PBL	Holtslag- Boville (1993)	Bretherton et al (2009)	Bretherton et al (2009)	Bretherton et al (2009)	CLUBB
Orographic form drag			Richter et al. (2010)	Richter et al. (2010)	Beljaars et al.2003
GW drag	McFarlane (1987)	McFarlane (1987)	McFarlane (1987) (non-orographic source updated for WACCM)	McFarlane (1987)	Anisotropic/Low- level nonlinearities
Shallow Convection	Hack (1994)	Hack (1994)	Park et al. (2009)	Park et al. (2009)	CLUBB
Deep Convection	Zhang- McFarlane (1995)	Neale et al. (2008)	Neale et al. (2008)	Neale et al. (2008)	Neale et al. (2008)
Microphysics	Rasch- Kristjansson (1998)	Rasch- Kristjansson (1998)	Morrison- Gettelman (2008)	Morrison- Gettelman (2008)	Morrison- Gettelman v2 (2014)
Macrophysics	Rasch- Kristjansson (1998)	Rasch- Kristjansson (1998)	Park et al. (2011)	Park et al. (2011)	CLUBB
Radiation	Collins et al. (2001)	Collins et al. (2001)	lacono et al. (2008)	lacono et al. (2008)	lacono et al. (2008)
Aerosols	Bulk Aerosol Model	Bulk Aerosol Model BAM	Modal Aerosol Model Ghan et al. (2011)	Modal Aerosol Model Ghan et al. (2011)	Modal Aerosol Model Ghan et al. (2011)
Dynamics	Spectral		14 Polatene	Spectral element	Finite Volume

Orographic GW drag in CAM

McFarlane, N. A. (1987). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. *Journal of the Atmospheric Sciences*, 44(14), 1775-1800.

Isotropic topography. No low-level blocking. Lindzen-type wave model

Orographic GWP drag in CAM

Never Implemented in CAM: Anisotropy, low-level blocking, e.g.;

Lott, F., and M. J. Miller (1997). A new subgrid-scale orographic drag parametrization: Its formulation and testing. *Quarterly Journal of the Royal Meteorological Society* 123.537: 101-127.
Gregory, D., Shutts, G. J., & Mitchell, J. R. (1998). A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 124(546), 463-493.
Scinocca, J. F., & McFarlane, N. A. (2000). The parametrization of drag induced by stratified flow over anisotropic orography. *Quarterly Journal of the Royal Meteorological Society*, 126(568), 2353-2393.
Alpert, J. C. (2004) Sub-grid scale mountain blocking at NCEP. *Proceedings of 20th Conference on WAF*, 16th conference on NWP.

Blocking, low-level turning

Parameterization allows flow around obstacles – *form drag* - as well as "downslope wind" high-drag dynamics (*following Scinocca*&*McFarlane* 2000)

Generation of ancillary topography files

- No traceable process for generating topography forcing data existed for CESM1 or earlier versions.
 - Derivation of subgrid variables and smoothing of mean elevations left up to dycore developers. Note: <u>all dycores</u> employ additional smoothing beyond binning to grid.
- New procedure starts from 1km GMTED2010 data (or GTOPO30) mapped to 3km cubed sphere grid.
 Further processing follows from 3km cubed sphere topo (*Lauritzen et al. GMD 2015*)

Generation of ancillary topography files

- What are orographic GWP supposed to represent?
- What is most realistic way to force orographic GWP?

Subgrid variance may not be a good way to diagnose forcing for orographic gravity waves

Cross-sections with approximately equal variances

Given that most models smooth topography. What should be parameterized – true sub-grid topography or deviation from smoothed topography?

Feature-based ridge identification

- Smooth topography (scale ~ L_s)
- Calculate variances of mean cross-sectional profiles at 16 different orientations on L_axL_a domains on dense grid
- Maximum 1D vs 2D variance determines "ridge" angle Ultimate goal is to improve on globally specified parameters for orographic waves, e.g., k, ε

Feature-based ridge identification

- Outputs
 - Orientation
 - Ridge height from max-min of profile (different from std. dev. of topo)
 - Estimate of ridge width and length
 - Geographically-based estimate of "effgw_oro"
 - "quality": ratio of 1D/2D variance

2D, WKB, steady-state, hydrostatic wave model

 a_w

 a_w

$$\rho \overline{u'w'}_{a_w \sim c_3 d_w l_w} = \frac{1}{A_w} \iint_{c_4 l_r} \rho u'w' dx dy \sim \frac{1}{A} a_w \rho c_1$$

$$\delta \approx \text{MIN}(h_r, Fr_c \frac{U}{N})$$

Our first try assures: $F \eta_{\overline{u}} \frac{U}{N} + \frac{d_r}{A} \rho N U \delta^2$

$$\rho \overline{u'w'} \sim \frac{1}{A} a_w \rho c_1 N \delta c_2 U \frac{\delta}{l_w} \sim \frac{1}{A} c_1 c_2 c_3 c_5 d_r \rho N U \delta^2$$
$$a_w \sim c_3 d_w l_w, \qquad l_w \sim c_4 l_r, \qquad d_w \sim c_5 d_r$$

Original scheme:

 $\sim \varepsilon k_{oro} \rho N U \delta^2$ $\epsilon = 0.125$ $k = 2\pi/100 km$

 a_w

AMIP runs 1/1979-2/2004

→2 configurations of WACCM IOGW: Original McFarlane (1987) isotropic gravity wave scheme

AOGW: New anisotropic scheme

ERA-I

IOGW 11.18 254120.FWscHIST.f09_f09.ogw01 Years1979-2003 1034.000 1030.000 1026.000 1022.000 1018.000 1014.000 1010.000 1006.000 1002.000 998.000 994.000 990.000 986.000 982.000 978.000 974.000

OCEAN: CORR= 0.99; DEV=1.18; RMSE=1.98; BIAS=0.29 LAND: CORR= 0.96; DEV=1.33; RMSE=3.11; BIAS=-0.87 GLOBAL: CORR= 0.98; DEV=1.20; RMSE=2.31; BIAS=-0.06 middle-top

AOGW 011.18 f.c54120.FWscHIST.f09_f09.ctl01 Years1979-2003

1034.000

1030.000 1026.000

1022.000

1018.000

1014.000

1010.000

1006.000

1002.000

ANN PSL

Sea-Level pressure (ANN)

ANN PSL

polar cap T: AOGW vs. MERRA

(from Rolando Garcia)

SH

NH

Data Assimilation tests

- NCAR's data assimilation research testbed (DART; Anderson et al .)
- Ensemble Kalman filter
- Radiosondes, cloud track winds, GPS

 No radiance assimilation
- Look at innovations to assess model performance w/ and w/out new schemes
- Period: Jan 15-Feb 15 2010

DAS increments over 15 Jan-15 Feb 2010

U(100m) (second level)

NH average Δ DAS increments in U over 15 Jan-15 Feb

• Multiple bands of orography

Trapping effects not actually included in current parameterizations.

Horizontal propagation of waves across grid boxes (time-dependence also? Ray-based? Super-param.?)

Saturation hypothesis – reality?

Bacmeister&Schoeberl 1989

Wave cloud radiative effects and chemical effects

Nacreous ice-clouds in stratosphere

Final Question

At which resolution can we live without parameterizations of orographic drag?

• *Based on CAM*, *GEOS5* **not** 25km. ... 5km? How do we answer the question: Climate simulations? Forecasts?

3km pixels are along ridge lines. Each contains estimates of height, width, orientation

180km

PBL Form drag – "Turbulent Mountain Stress (TMS)"

Enhanced roughness length z_0 over rough/hilly terrain, e.g., "turbulent mountain stress" (TMS) scheme currently in CESM (Richter et al. 2010)

$$\mathbf{F}_{x} = C_{D} | \mathbf{U} | U(z)$$
$$C_{D} = \kappa \left(\ln \left(\frac{z}{z_{0}} \frac{z}{z_{0}} \right)^{-2} \right)^{-2}$$

 Z_0 is roughness length

 z_0 is assumed proportional to $\sqrt{\langle H_{\delta}^2 \rangle}$ where h'_{δ} is topographic variability for scales λ <3km-5km

Annually averaged surface drag (total and components)

PDFs of monthly mean drag over land

PBL Form drag – "Turbulent Mountain Stress (TMS)"

Enhanced roughness length z_0 over rough/hilly terrain, e.g., "turbulent mountain stress" (TMS) scheme currently in CESM (Richter et al. 2010)

$$\mathbf{F}_{x} = C_{D} | \mathbf{U} | U(z)$$
$$C_{D} = \kappa \left(\ln \left(\frac{z}{Z_{0}} \frac{z}{z} \right)^{-2} \right)^{-2}$$

 Z_0 is roughness length

 z_0 is assumed proportional to $\sqrt{\langle H_{\delta}^2 \rangle}$ where h'_{δ} is topographic variability for scales λ <3km-5km

ERA-I 15.000 14.000 13.000 12.000 11.000 10.000 9.000 8.000 7.000 6,000 5.000 4.000 3.000 2.000 1.000 0.000

 OCEAN:
 CORR=
 0.96;
 DEV=1.11;
 RMSE=0.60;
 BIAS=0.21

 LAND:
 CORR=
 0.83;
 DEV=0.61;
 RMSE=1.31;
 BIAS=-0.87

 GLOBAL:
 CORR=
 0.95;
 DEV=1.15;
 RMSE=0.87;
 BIAS=-0.10

10m windspeed Annual mean

AGW/Bel/KM+

 OCEAN:
 CORR=
 0.97;
 DEV=1.06;
 RMSE=0.59;
 BIAS=0.31

 LAND:
 CORR=
 0.88;
 DEV=0.98;
 RMSE=0.81;
 BIAS=0.14

 GLOBAL:
 CORR=
 0.97;
 DEV=1.05;
 RMSE=0.66;
 BIAS=0.26

7.000 6.000 5.000 4.000 3.000 2.00Q 1.000 0.000 -1.000 -2.000 -3.000 -4.000 -5.000 -B.000 -7.000

Data points from 1km GMTED or GTOPO30 datasets binned into "3km" cubed sphere grid boxes. From solid red dots we obtain:

Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM National Snow and Ice Data Center

Topography Generation

Lauritzen et al. (2015, GMD)

Ridge-based orographic drag scheme with low-level nonlinearities

- Anisotropy
- Low-level processes (blocking)
- Multiple ridges