DC3 Data Meeting Aerosol Breakout Overview

2/27/2013

Issues to Address

Artifacts during in-cloud measurement

- Some measurements are more susceptible than others (PALMS, SP2, scattering)
- Common inlets present common timing
- Cloud probes (IWC, ice size distribution), when available, could be used for filtering
- Identification of cases to validate datasets and provide justification for publications

Each group will flag independently

Potential Papers

New Particle Formation (NPF)/Growth

- 1. Jim Smith process study of growth in outflow (MCS case)
- 2. LARGE NPF survey, relationship to photochemical/convection clock

Convective Transport

- 3. Dibb/LARGE/AMS/PALMS convective transport, assessment of BL variability
- 4. SP2 convective transport of BC, comparison to climatology and historic observations
- 5. DiGangi effects of inflow aerosol/gases on ice supersaturation in anvil

Outflow/Downwind

- 6. Froyd Dust in the UT
- 7. Minikin (Falcon) microphysical comparison of aged outflow to background aerosol
- 8. AMS Nitrate chemistry from Lightning NOx

Source Characterization

- 9. Crumeyrolle/AMS Biomass Burning entrainment (6/22)
- 10. AMS comparison of all biomass burning cases, aging

Instrument-Specific

- 11. Martins aerosol phase function
- 12. PALMS organosulfates
- 13. Sorooshian sub-saturated hygroscopicity
 - ** DIAL provides aerosol typing and vertical/spatial context **

Scientific Gaps

- Cloud/Aerosol interactions employing wing-mounted probes
- Influence of aerosols on lightning and the production of NOx
- Direct (radiative) effects of aerosols on storm dynamics