DC3 Science Team Meeting February 25-28, 2013

Overview of the Deep Convective Clouds and Chemistry (DC3) Experiment

DC3 is sponsored by the National Science Foundation (NSF), NASA, NOAA, and DLR.

May 25, 2012 OK/TX storm; Photograph by Chris Cantrell

Motivation

In the upper troposphere, ozone is a GHG

 \rightarrow important for climate change

What chemical compounds get into the upper troposphere and do they produce or destroy ozone? What role do thunderstorms have in affecting the UTLS composition and chemistry?

Motivation

Previous Field Studies good storm information, limited chemistry

- STERAO (1996, northeast Colorado)
- EULINOX (1998, Europe)
- TROCCINOX (2004; 2005, Brazil)
- SCOUT-O3 (2005, Darwin, Australia)
- STEPS (2000, Colorado-Kansas border)
- Good storm and kinematic data
- Limited number of chemical species measured by aircraft

STERAO (northeast Colorado)

- Two aircraft, airborne and ground-based radar, ONERA lightning detection network
- Findings from July 10, 1996 storm:
 - Intracloud lightning flashes can be a major contributor to NOx
 - Lightning occurred primarily in moderate updrafts and weak downdrafts
 - Cloud-scale modeling reasonably represents transport and redistribution of trace gases; unknown how well they represent transport and scavenging of soluble gases
 - Production of NO from lightning estimated to be 330 moles/flash

STEPS (Colorado-Kansas border)

- Findings :
 - Related storm parameters to lightning flash rate
 - Provided first of the kind dynamical, microphysical and electrical observations of inverted storms and normal polarity storms
 - Positive CG lightning linked to mid-level positive charge in inverted tripole storms
 - Low Precipitation supercells characterized by inverted dipoles with no lower negative charge; no CG lightning
 - Positive CG producing storms found to be more intense, containing strong, broad updrafts

Wiens et al., 2005; Tessendorf et al., 2007a,b

Previous Field Studies good chemistry information, limited storm data

- INTEX-A (2004, continental US)
- TRACE-P (2001), ARCTAS (2008)
- Limited cloud and no kinematic data
- Nice suite of chemical species measured by aircraft

INTEX-NA Findings

- Bertram et al., 2007, Science
 - Substantial influence of deep convection on UT composition
 - Estimate 17% of PBL air is in fresh convective outflow; 54% of UT air influenced by convection that occurred during the previous 2 days
 - Convective turnover rate between 0.1 and 0.2/day
 - Use of chemical clock as coordinate for UT chemistry
- Snow et al., 2007, JGR
 - Convectively influenced air enhanced in CH_3OOH , CH_2O , CO, NO, and NO₂, and depleted in H_2O_2 and HNO_3

ARCTAS Findings

- Apel et al., 2012, ACP (storms in Canada)
 - Transport of isoprene to UT
 - Impact of lightning-NOx on UT OH in presence of isoprene
 - Low O3 production without lightning-NOx
 - Substantial O3 production with lightning-NOx AND isoprene

AMMA (2006, western Africa)

- Variety of facilities (radar, LINET, multiple aircraft)
- Borbon et al. (2012) JGR:
 - CH₂O scavenged by storms to some extent (4-39%)
 - After convection, 60% of CH₂O is due to photochemical production rather than direct transport
- Huntrieser et al. (2011) ACP
 - Study of 2 MCS \rightarrow 70-180 moles NO/flash
 - Lower lightning-NOx production similar to findings from other tropical studies (TROCCINOX, SCOUT-O3), but smaller than the 300-500 moles/flash estimated for midlatitudes (STERAO, CRYSTAL-FACE, EULINOX)

Goals of the DC3 Field Campaign

- 1. To characterize thunderstorms and how they process chemical compounds that are ingested into the storm (transport, scavenging, lightning, production of NOx from lightning, chemistry)
- 2. To learn how the air that exits the storm in the upper troposphere (UT) changes chemically during the next day (chemical aging)

Additional topics: aerosols, halogens

Setting for the DC3 Field Campaign

When: May – June 2012 Where: Based Salina, Kansas

Sampled storms in NE Colorado, W Texas to central Oklahoma, and N Alabama

Downwind Flights

Where: Sampled photochemical aging of convective outflow in the central to eastern U.S.

Aircraft Facilities

3 aircraft equipped with chemistry, aerosol, and cloud physics probes.

<u>GV:</u> NO_x, O₃, CO, CO₂, CH₄, CH₂O, VOCs, OVOCs, peroxides, SO₂, HNO₃, HNO₄, radiation, particle size distributions, cloud particle images, H₂O, CN

Cantrell: Summary of GV Measurements

<u>DC-8:</u> O₃, O₃ & aerosol profiles, NO_x, HNO₃, NO_y, PANs, ∑ANs, ∑PNs, HNO₄, CH₂O, CO, CO₂, CH₄, VOCs, OVOCs, peroxides, HO_x, radiation, H₂O, SO₂, CN, particle size distributions, BC, f(RH), particle composition, aerosol optical properties

Brune: Summary of DC-8 Measurements

<u>Falcon</u>: O₃, NO, NO_γ, CO, CO₂, CH₄, VOCs, SO₂, j(NO₂), particle size distributions and number, aerosol absorption, BC

Huntrieser: Summary of Falcon Measurements

Aircraft Flights

Using the 3 aircraft, DC3 sampled:

19 cases of active thunderstorms; >6 cases of photochemical aging

NSF/NCAR GV and NASA DC-8 flew 17 coordinated flights

8 storms in northeast Colorado

5 storms in West Texas to central Oklahoma

2 storms in Alabama & Mesoscale Convective System (MCS) over Missouri

3 cases of photochemical aging from TX/OK storms2 cases of photochemical aging from NE Colo. Storms1 case of chemical aging of the 0-12 hr dissipating MCS outflow

	SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
	МАҮ	Shakedown AL				CO storm	OK storm
	13	14	15	16	17	18	19
		AL storm				OK storm	Downwind
	20	21	22	23	24	25	26
Green = Alabama storm Drange = OK/TX storm			OK storm	Downwind		CO sources & TX storm	CO storm
Slue = Colorado storm			29	30	31	1	2
urpie	ie = chemistry locus		CO	CO atarina	Description		
	JUNE		storm	CO storm	Downwind		
	3	4	5	6	7	8	9
		AL & MCS				CO storm	OK storm
	10	11	12	13	14	15	16
	Downwind				MCS aging	CO storm	Downwind
	17	18	19	20	21	22	23
No.		UT survey		CO storm	CO storm		TX sources
	24	25	26	27	28	29	30

DLR Falcon Flight Tracks

Labrador Sea

Great Slave

MEXICO

STATES

COLOMBIA

UNIT

13 DLR Falcon DC3 missions from ALGERIA 29 May – 14 June 2012 MAURITANIA ^{Caribbean Sea} local flight hours NIGERIA

© 2012 NAVTEQ Image courtesy of NASAMON @ 2012-Migre

Norwegian Sea

North Sea

WEDEN

diterranear Sea

LIBYA

NIGER

FINLAND

DLR Falcon Flight Tracks

Labrador Sea

Great Slave Lake

CANADA

UNITED STATES

Airmasses affected by Biomass Burners MEXICO

Convective outflow (fresh and aged

COLOMBIA

and

© 2012 NAVTEQ Image courtesy of NASAM @ 2012-Microsoft

MAURITANIA

Norwegian Sea

North Sea

No.0

WEDEN

editerranear

Sea

LIBYA

NIGER

NIGERIA

EGYPT

SUD

FINLAND

	SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
	МАУ	Shakedown AL				CO storm	OK storm
	13	14	15	16	17	18	19
		AL storm				OK storm	Downwind
	20	21	22	23	24	25	26
Green = Alabama storm Drange = OK/TX storm			OK storm	Downwind		CO sources & TX storm	CO storm
Slue = Colorado storm			K		31	1	2
rurpie	ble = Chemistry focus		CO storm	CO storm	Downwind		
	JUNE 3	4	Storm <i>K</i>		7 7		9
		AL & MCS				CO storm	OK storm
	10	R 🔶	: 🕈 K	13		15	16
	Downwind				MCS aging	CO storm	Downwind
	17	18	19	20	21	22	23
		UT survey		CO storm	CO storm		TX sources
lanses !!	24	25	26	27	28	29	30

Ground Facilities

What: Ground-based radars, lightning mapping arrays, and weather soundings in all three sampling regions

Colorado Ground-based Operations

Colorado Ground Facilities:

LMA and radars operated throughout campaign

16 cases in total including 4 days of scanning electrified fire plumes

Rutledge: Highlights of Colorado Operations

Oklahoma-Texas Ground-based Operations

West Texas to Central Oklahoma Facilities:

LMA operated throughout campaign

Radars and soundings operated on 13 days; 7 days of in-storm EFM sdgs

MacGorman: Highlights of Oklahoma-Texas Operations

Alabama Ground-based Operations

Alabama Ground Facilities:

LMA and radars operated throughout campaign 12 cases of a variety of thunderstorms observed Carey: Highlights of Alabama Operations

Forecasting for the DC3 Field Campaign

Expert forecasting used to predict if/when storms would occur in the DC3 sampling regions

regions	1.0	The second second second	
		<u>Salina, Kansas</u> Lead Forecaster Nowcasters	
		Regional Forecasters	
NE Colorado CSU		Oklahoma/Texas	Alabama

Synoptic Meteorology over U.S.

Characterized by troughs and ridges advecting from west to east across U.S., typical for mid-latitudes

Southern U.S. dried out during June and went into drought conditions

Wildfires were predominant over the Rocky Mountains, beginning in New Mexico and moving northward into Colorado, Wyoming, and Montana/Idaho/Washington later in the summer

Water Vapor Imagery

See water vapor movie file

Courtesy Owen Cooper

Visible Satellite / Radar

Flight Region

0000 UTC Sun 3 June 2012

300 mb Heights / Isotachs

(knots

0000 UTC Thur 31 May 2012

300 mb Heights (dm) / Isotachs (knots)

0-hour analysis valid 0000 UTC Sun 03 Jun 2012

RAP (00z 03 Jun)

300 mb Heights / Isotachs

16 May 0030 UTC

Wildfires

29 May 0130 UTC

23 June 0130 UTC

Synoptic Meteorology over U.S.

Characterized by troughs and ridges advecting from west to east across U.S., typical for mid-latitudes

Southern U.S. dried out during June and went into drought conditions

Wildfires were predominant over the Rocky Mountains, beginning in New Mexico and moving northward into Colorado, Wyoming, and Montana/Idaho/Washington later in the summer

Meteorology of DC3 Storm Sampling Regions

The three regions have different types of thunderstorms. Colorado storms: high shear and high cloud bases resulting in ice-dominated storms.

- **Central Oklahoma and West Texas**: shear-driven thunderstorms with large convective available potential energy (CAPE) producing strong, severe storms.
- Northern Alabama storms: low shear with moderate CAPE creating short-lived storms.

Mesoscale Convective System (MCS) sampled on June 11: both high shear and CAPE.

→ Plot the 0-6 km shear vs. CAPE for each storm case

Meteorology of DC3 Storm Sampling Regions

NCAR WRF Forecasted CAPE and 0-6 km shear. Values are taken ~1 hour before convection occurred in the region. NCAR WRF forecasts by Weisman, Barth, Manning, Wang, Bela.

- → General separation of types of storms from region to region
- → The MCS lies between OK/TX and northeast CO storm environments

Chemical Environment of Sampling Regions

The three regions have different chemical environments.

Northeast Colorado:

Agricultural region +Denver plume Isoprene and biogenic VOC emissions are low

Central Oklahoma and West Texas:

Agricultural with 100s of gas and oil wells Influenced by Dallas – Ft. Worth and Oklahoma City plumes

Northern Alabama:

Forested region with high isoprene and biogenic VOC emissions. Industrial activity

MCS in southern Missouri and Arkansas:

Mixture of high biogenic and anthropogenic air composition

→ Plot the biogenic species vs. anthropogenic species for each storm case

Chemical Environment of Sampling Regions

Preliminary data of average concentrations within 2 km of the ground color coded by the sampling region. All points are from DC-8 data except the June 27, 28 storms.

DC3 Preliminary Data provided by the following Instrument Teams:

PTR-MS – Proton Transfer Reaction Mass Spectrometry: A. Wisthaler (U. Innsbruck)

TOGA – Trace Organic Gas Analyzer: E. Apel (NCAR) and D. Riemer (U. Miami), R. Hornbrook, A. Hills (NCAR)

Range of types of storms and chemical environments

Outcomes of DC3 Field Experiment

Several Hypotheses and Topics to Address: **Convective Transport and UT Transport Properties** Scavenging Lightning-generated NOx Lightning – storm parameter relationships Inverted lightning cases compared to normal polarity lightning Chemistry in/near the anvil where it is bright or dark Ozone production during the next 24 hours Seasonal transition of the UT composition Aerosol processing by storms, new particle formation, etc. **Biomass burning studies** Source characterization of regions Halogen chemistry

Outcomes of DC3 Field Experiment

Unique dataset of measurements combining meteorological, electrical, and chemical parameters.

- Improve knowledge on thunderstorms and how storms affect the composition and chemistry of the atmosphere
- Apply that knowledge to weather and climate models

The NCAR/EOL staff are thanked for their superb support of the field project: Vidal Salazar and Jim Moore – overall support Greg Stossmeister, Steve Williams – field catalog and data archive Mike Daniels and team – IT support A. Schanot, J. Jensen – GV support; F. Cutler, C. Jennison (NASA) – DC-8 support

Smoke Plume Entrained into Thunderstorm June 22, 2012

Unexpected Measurements of biomass burning and thunderstorms allow for studies on:

Entrainment from the side of storm (7 km altitude)

Effects of particles on the storm and on lightning flashes

May 30, 2012 – Kansas June 11, 2012 – Missouri – Arkansas June 21, 2012 – Missouri

Houze, Rutledge, Biggerstaff and Smull (1989), BAMS