Airborne quantification of lightning-induced NO_x production in deep convective storms over the continental United States

I. B. Pollack^{1,2}, T. B. Ryerson², J. Peischl^{1,2}, A. J. Weinheimer³, D. J. Knapp³, T. Campos³, F. Flocke³, R. C. Cohen⁴, B. Nault⁴, G. Diskin⁵, G. Sachse⁵, T. Mikoviny⁶, and A. Wisthaler⁷

U.S. Department of Commerce, used with permission

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado; ²Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado; ³Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO; ⁴Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley CA; ⁵NASA Langley Research Center, Hampton, Virginia; ⁶Oak Ridge Associated Universities (ORAU), Oak Ridge, TN; ⁷Institut fuer Ionenphysik und Angewandte Physik, Technikerstrasse 25, 6020 Innsbruck

1. Introduction

Objective:

• Determine a measurement-based constrained range for NO_x produced per lightning flash for storms sampled during the 2012 Deep Convection Clouds and Chemistry (DC3) experiment

2. Example Storm: 19 May

Images show isolated storm with presence of

<u>Chemical tracers illustrate LNO_x enhancements</u> and transport:

• Compare results for storms sampled over the continental U.S. during DC3 with reported global average range

Advantages of DC3 data set:

- Storms sampled by two instrumented aircraft (NASA DC-8 and NSF/NCAR GV)
- NO and NO₂ measurements; Radar and lightning mapping data products

Approach:

- Calculate NO_x production per flash using two different analysis methods reported in the literature (demonstrated here using one example storm)
- Compare methods using results for all storms sampled over Oklahoma

3. NOx production using <u>Volume</u> method

Molecules NO_x estimated from **volume** Ridley et al. (1996, 2004), Koike et al. (2007)

<u>Top View</u>

Estimated storm volume from composite radar images

4. NOx production using Flux method

NO_x **flux** out of anvil Chameides et al. (1987), Huntrieser et al. (1998, 2002)

Vertical Cross Section \xrightarrow{wind} , $\Delta z_{anvil \ depth}$

Estimated anvil depth from <u>NO_x vertical distribution</u>

- Images selected during outflow sampling and when storm is most developed
- Image surface area calculated from pixels > 20 dZB; Total volume = $2 \text{ km} \times \sum (\text{surface areas})$

5. Summary of Results

		V	olume Metho	d	Flux Method			_		
Oklahoma Storms	# CG flashes (hrs)	x10 ¹⁵ molecules m ⁻³	Volume x10 ¹³ m ³	$P(NO_x) \ge 10^{25}$ molecules flash ⁻¹	x10 ²⁵ molecules s ⁻¹	Flash rate flashes s ⁻¹	<i>P</i> (<i>NO_x</i>) x10 ²⁵ molecules flash ⁻¹	Volume/Flux Ratio		
19 May ^a	1097 (4)	9.4	5.0	42	2.9	0.08	38	1.1	^a DC-8 data	
25 May ^a	2009 (3)	8.3	4.3	18	1.5	0.19	8	2	^b DC-8 and GV data	
29 May ^{b,c}	2963 (3)	3.8	17.3	22	1.9	0.27	7	3	^c Most outflow samplings	
16 June ^b		10.1	22.4		9.9					
DC3 Mean				27			18	Results for CG flashes only		
DC3 Mean 9			9			6	Results for total (IC+CG) flashes estimated using			
DC3 Range			6 – 14				2 – 13	IC:CG ratio ~ 2:1 from <i>Boccippio et al.</i> (2000)*		
Global Mean							l modeling studies since			
Global Range						2 - 40	mid-1970s by Schumann and Huntrieser (2007)			
Continental U.S. Mean							22	Compiled from field studies over the continental U.S. since		
Continental U.S. Range							2 - 40	mid-1970s by Schumann and Huntrieser (2007)		

Volume method overestimates $P(NO_x)$ by about a factor of 2 compared to the flux method

*Better estimates of total flashes pending available data from lightning mapping arrays

- Volume-based results depend on estimated storm volume; Flux-based results depend on estimated anvil depth
- Range for storms sampled over the continental U.S. during DC3 is within the reported average range of $2 40 \times 10^{25}$ molecules per total flash
- Improvement in individual storm estimates will be possible as additional DC3 data products become available