WRF-Chem simulations of the May 29, 2012 DC3 Oklahoma severe storm case and comparison with aircraft data

Megan M Bela¹, Mary C Barth², Owen B. Toon¹, Hugh Morrison², Kristin Cummings³, Kenneth E Pickering⁴, Morris Weisman², Kevin Manning², Glen Romine², Wei Wang²

¹University of Colorado, Boulder, Colorado; ²National Center for Atmospheric Research, Boulder, Colorado; ³University of Maryland, College Park, Maryland; ⁴NASA/GSFC, Greenbelt, Maryland;

Contact information: megan.bela@colorado.edu

Abstract

Deep convective thunderstorms affect the vertical distribution of chemical species through vertical transport, wet scavenging of soluble species as well as aqueous and ice chemistry. This work focuses on the vertical distribution of chemical species in the May 29, 2012 DC3 Oklahoma thunderstorm. Simulations were conducted with the Weather Research and Forecasting with Chemistry (WRF Chem) model, with a 15km grid encompassing the continental US. WRF-Chem shows good agreement with observed precipitation rate and radar reflectivity, as well as CO and O3, indicating that emissions and model dynamics are reasonable. However, WRF-Chem underestimates NOx in the upper troposphere, suggesting the need for furtherwork on the lightning NOx parameterization, and soluble species such as SO2 and CH2O are overestimated, indicating the need to include wet scavenging processes in WRF-Chem.

WRF-Chem Setup

Grid spacing: dx = 15 km, 40 vertical levels to 50 hPa (~650 m in UT)

Initial/Boundary Conditions: DART (met), MOZART (chem)

Physics: Grell 3D convection, Morrison cloud microphysics, MYJ PBL

Chemistry: MOZART gas chemistry mechanism; GOCART aerosol scheme **Emissions:** EPA NEI 2005 anthropogenic (2012 NO/NO2 based on OMI NO2), aircraft from Baughcum (1999), MEGAN v2.0.4 biogenic, FINN fire

Included processes:

https://www2.acd.ucar.edu/sites/default/files/dc3/thunde rstorm-airmass_squall-line.jpg

Lightning-NOx : FR = $3.44 \times 10^{-5} z_{top}^{4.9}$ z_{top} = cloud top height = level neutral buoyancy – 2 km (Wong et al., 2012) 500 moles NO/flash placed vertically following Ott et al. (2010) curves

May 29, 2012 DC3 Oklahoma severe storm case

Simulated and observed storm location and intensity show good agreement 24-hr Accumulated Precipitation 2012-05-29 12Z – 2012-05-30 12Z NWS Precip Analysis

Maximum radar reflectivity (dBZ) NEXRAD 2012-05-30 01Z)

Simulated CO values match DC8 and GV observations of elevated CO in center of storm

Simulated O_3 values at 11km compared well with DC8 and GV storm observations but NO_x is too low by a factor of ten

WRF-Chem overpredicts total hourly flash rate in storm region compared to NLDN, but underestimates intensity

Hourly Flash Rate Total within 35-40°N, 95-100°W 2012/05/29 22Z - 2012/05/30 01Z 2500 ---- NLDN CG 2000 N Flashes per Hour 1500 1000 500 22 23 24 25 Hour

Note: NLDN data includes Cloud-to-Ground (CG) flashes only, while WRF data is CG plus Intracloud (IC)

CO and O3 show good agreement between model and observations, indicating reasonable source emissions and model dynamics

Summary

A WRF-Chem simulation was conducted of the May 29, 2012 Oklahoma severe thunderstorm on a 15km grid encompassing the continental US, and results were compared with observations from the GV and DC8 aircraft. The model shows good agreement with observations for both CO and O_3 /CO, indicating that model dynamics and boundary conditions are reasonable. NO_x is under predicted by the model in upper levels, due to underestimated lightning NO_x production. High mixing ratios of SO₂/CO and CH₂O/CO were found in the boundary layer and in convective outflow, indicating that material is convectively lofted from the boundary layer in the storm inflow region. WRF-Chem over predicts these soluble species, suggesting that some SO₂ and CH₂O are removed or transported downward by aqueous chemistry and/or wet deposition, which were not included in this simulation.

This work was funded by an NSF ATM grant.

DC3 Preliminary Data Provided by the following Instrument Teams:
DC-8 CO: DACOM - Differential Absorption Mid-IR Diode Laser Spectrometer for
CO, CH4, and N2O: G. Diskin, G. Sachse, J. Podolske (NASA/LaRC)
DC-8 O3, NOx: CSD CL – NOAA Chemical Luminescence NOyO3: T. Ryerson, I.
Pollack, J. Peischl (NOAA/ESRL/CSD)
GV CO, O3, NOx: CARI – NCAR Community Airborne Research Instrumentation: A.
Weinheimer, F. Flocke, T. Campos, D. Knapp, D. Montzka (NCAR)

Future Plans

Increase horizontal (3/1 km) and vertical resolution

Simulate June 22 NE CO storm (interaction with High Park Fire)

Couple wet scavenging to Morrison microphysics and G3 convection, explore ice adsorption, ice and aqueous chemistry

Simulate the rest of the DC3 case studies with CONUS 15 km domain