

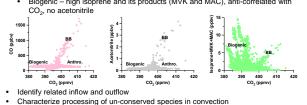
Carbon Dioxide Measurements on the DC-8: Tracers for Tropospheric Air Mass Transport

NASA Langley CO₂ Group: Andreas Beyersdorf (andreas.j.beyersdorf@nasa.gov)¹, Yonghoon Choi, Melissa Yang, Krishna Vadrevu (U. Md) Data from: Bruce Anderson et al. (NASA LaRC, Aerosol Optical Properties), Glenn Diskin et al. (NASA LaRC, CO), Jose Jimenez (UC-Boulder, AMS), Tom Ryerson et al. (NOAA, NOy & Ozone), S. Schwarz et al. (NOAA, Black Carbon), Armin Wisthaler (NILU, Acetonitrile)

Transport During RF02

RF02 (May 19th) - Flight to OK

Inflow /

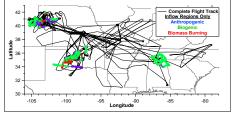

Outflow

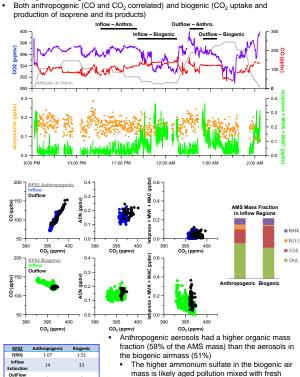
Carbon Dioxide Measurement

- AVOCET: Atmospheric Vertical Observation of CO₂ in the Earth's Troposphere
 CO₂ measured via differential absorption by a Non-Dispersive Infrared Spectrometer
- $(4.26\mu m)$ All measurements are calibrated to WMO standards with an accuracy of 0.25 ppmv and a precision of less than 0.1 ppmv.
- a Hz data is reported and has been corrected for a 4 second time delay to the DLH water vapor measurement

Carbon dioxide is used as a conserved tracer along with other tracers (CO,

- acetonitrile, isoprene) in order to:
- Characterize storm inflow
 Anthropogonia CO and C
- Anthropogenic CO and CO₂ correlate, no acetonitrile
 Biomass Burning (BB)– high acetonitrile, dCO > dCO₂, some isoprene
- Biogenic high isoprene and its products (MVK and MAC), anti-correlated with




Inflow Characterization

RF	Date	Storm Location	Inflow (UTC)	Outflow (UTC)	Pollution Type
1	May 18	со	21:42 - 22:52	23:17 - 23:48	Anthropogenic & Biogenic
2, #1	May 19	OK	22:33 - 23:20	24:30 - 24:45	Anthropogenic
2, #2	May 19	OK	23:20 - 24:14	24:46 - 25:00	Biogenic
3	May 21	AL	18:15 - 20:15	21:15 - 22:00	Biogenic
4	May 25	OK	23:42 - 24:54	25:17 - 25:27	Biomass Burning & Biogenic
6	May 29	OK	22:09 - 23:15	23:40 - 24:13	Biogenic & Anthropogenic
8	June 1	OK	24:32 - 25:22	25:38 - 26:00	Biogenic & Anthropogenic
9	June 2	со	20:08 - 21:30	21:58 - 23:09	Biogenic
10	June 5	со	23:08 - 23:42	24:03 - 24:38	Biogenic
11, #1	June 6	со	20:35 - 21:23	21:47 - 21:57	Biogenic & Anthropogenic
11, #2	June 6	со	22:12 - 23:00	23:27 - 23:52	Anthropogenic
13	June 11	AL	19:00 - 20:00	21:15 - 22:00	Biogenic
14	June 15	со	21:18 - 21:38	22:13 - 22:36	Anthropogenic & Biogenic
15	June 16	ОК	24:02 - 25:21	25:42 - 26:02	Biogenic
18	June 22	со	22:34 - 23:55	24:16 - 25:39	Biogenic & Anthropogenic

15 Cases of Storm Inflow and Outflow

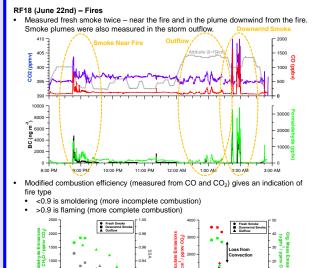
- Preliminary identification of inflow and outflow based on flight notes.
- Air masses characterized based on:
- Stratospheric: Ozone > 90 ppbv (outflow only)
- Biomass Burning: Acetonitrile > 0.2 ppbv
- Biogenic: Isoprene + MVK + MAC > 0.1 ppbv
- Anthropogenic: CO₂ > 397 ppmv
- A large fraction of data was a mix of the various types
 Dust was also a major source of aerosol
- Biogenics dominate in Alabama while Colorado & Oklahoma have a mix of
- anthropogenic and biogenic air masses
- Biomass burning during RF01, RF04 and RF18

 a 6 biogenic gas-phase tracers (isoprene and its photochemical products)
 Higher organic mass → Lower f(RH) → Less aerosol removal during convection

Inflow/Outflow Transport
Inflow/Outflow Screened for:

 Cloud sampling (by IWC)
 Stratospheric air (by ozone)
 Aerosol transport efficiency is lower for

 Aerosol transport enciency is lower biogenic air masses
 Anthropogenic: 21%

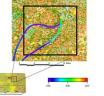

Biogenic: 5%

160

120 14 CO (ppbv) Transport efficiencies are similar to those reported by Ziemba et al. (poster) based on region

- Colorado & Oklahoma: 25-37%
- Alabama: 5%Consistent with increased biogenic air
- masses in the Alabama study region

Biomass Burning Plumes


 0.92
 0.94
 0.96
 0.98
 0.90
 0.92
 0.94
 0.46

 MCE = CO_/(CO+CO_)
 MCE = CO_/(CO+CO_)
 MCE = CO_/(CO+CO_)
 MCE = CO_/(CO+CO_)

Land Use

- Linkage between vegetation and land use to study carbon dioxide sinks and sources.
 - Above: Flight tracks from RF01 through RF03 to the three study regions. Significant $\rm CO_2$ uptake was measured over Oklahoma and Alabama.

- Left: Close up of RF02 near Salina, KS.
 Take-off heading west over a mix of grassland and crops (mosaic vegetation) - resulting in significant carbon uptake (<393 ppmv)
- During descent (heading north) over grasslands - no carbon uptake (~400 ppmv)
- High CO₂ near Salina as expected

DC-3 was jointly funded by NSF and NASA. We would like to thank the support of the entire DC-3 and SEAC4RS science teams.

