NCAR

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

S. R. Hall}, K. Ullmann}, K.S. Schmidt?, B. Kindel?, J.W. Hair3

1. National Center for Atmospheric Research (NCAR), Boulder, CO 2. University of Colorado, Boulder, CO 3. NASA Langley Research Center, Hompton, VA

A51E-0116: Actinic flux measurements and photolysis frequencies
enhancements near clouds during DC3 and TORERO

Abstract

Spectrally resolved up and down-welling actinic flux was measured from aircraft
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Improvements in this instrumentation and the data analysis provide for fast, accurate
measurements. Photolysis frequencies calculated from the actinic flux show
significant enhancements above clouds. The upwelling signal is enhanced by the
high reflectivity of the cloud below. The downwelling is also enhanced due to
backscatter of reflected light from the cloud top. Under specific conditions, including
high sun and highly reflective clouds, upwelling actinic radiation may exceed the
downwelling even with clear skies above. These conditions may have occurred
during TORERO and DC3 resulting in regions of highly active photochemistry.
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Ratio of CAFS/TUV jNO, during a DC-8 spiral showing
enhanced photolysis above a highly reflective convective
cell and strong reduction below the cloud base.

GOES-13 visible satellite image showing convection overlaid
with the blue DC-8 flight track (with the spiral and high
altitude loop shown at right are highlighted in red).

Thunderstorm atmospheric chemistry impacts
(Courtesy of NOAA National Weather Service).

Ratio of TUV modeled JNO, and jO, in the presence of
a cloud (of varying optical depth) to clear sky. The
Impact increases with optical depth and the impact on
jO, decreases more rapidly with altitude than for JNO.,.
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