

Elevated O₃ in Fresh and Aged Lightning-NOx Plumes Interacting with Biomass Burning Plumes over the Central U.S. during DC3*

(*Deep Convective Clouds and Chemistry Experiment)

<u>H. Huntrieser¹</u>, M. Lichtenstern, M. Scheibe, H. Aufmhoff,
H. Schlager, T. Pucik, A. Minikin, B. Weinzierl, K. Heimerl,
D. Fütterer, B. Rappenglück, L. Ackermann, K. E. Pickering,
K. A. Cummings, and M. Barth

Knowledge for Tomorrow

¹Deutsches Zentrum für Luft- und Raumfahrt

German Aerospace Center

Schematic of a) a mature <u>airmass thunderstorm</u> and b) a <u>squall line</u> vertical cross section. Superimposed on panel b are processes affecting chemical species that are ingested into storms.

http://www.srh.weather.gov/srh/jetstream/index.htm

Motivation of the German DLR Falcon team to participate in DC3 – Deep Convective Clouds and Chemistry Experiment

- <u>Quantification of lightning-produced NO_x (LNOx)</u> (fresh and aged) including tracer transport and O₃ production
- <u>Aerosol characterization</u> (fresh and aged) in thunderstorm inflow/outflow and in **biomass burning** (BB) plumes

1. DC3 Field experiment design:

- role of the German DLR Falcon
- Falcon instrumentation
- Falcon flight tracks

2. Falcon mission flights in summer 2012 (KS):

- general overview
- selected flights:

12 June "fresh LNOx" (CO/KS) + BB
30 May "fresh LNOx" (OK/TX) + BB
8 June "aged LNOx" (CO/KS) + BB

3. Summary

DC3 field experiment design

Instrumentation on the German DLR Falcon during DC3 Aircraft base in Salina (KS)

<u>High Park</u> (CO): <400 km downwind

<u>Whitewater-Baldy</u> (NM): <600 km downwind <u>Little Bear</u> (NM): <800 km downwind

Intense BB plumes intercepted on:

- 29 May (b)* however no CO data
- 30 May (a+))*
- 11 June (b)**
- 12 June (a)***

 \rightarrow between BL and 10 km

→ BB plumes probed outside of TS however also mixed into TS!

*<u>Whitewater-Baldy</u> (NM): <600 km downwind **<u>Little Bear</u> (NM): <800 km downwind (CO peak ~700 nmol mol⁻¹) ***<u>High Park</u> (CO): <400 km downwind

SO₂ strongly elevated in BB plumes!

Intense (in bold) <u>fresh</u> LNOx plumes intercepted on:

- 29 May (b) however no NO data
- 30 May (b) supercell
- 5 June (a+b)
- 6 June (a) however no NO data
- 11 June (a+b) MCS
- 12 June (a) squall line

<u>Aged</u> LNOx plumes (12-24 h) intercepted on:

- 8 June (a+b) squall line

DC3:

On average very high NOx mixing ratios in the UT (mainly LNOx) compared to other Falcon thunderstorm campaigns in Europe, South America, Africa and Australia.

In a DC3 supercell and MCS similar average NOx mixing ratios (~2-3 nmol mol⁻¹) as in Hector!

BL-NOx similar as over Africa and Europe.

Vertical profiles: 250 m mean values

Highest O_3 in UTLS <u>and</u> at the ground on 8 June during probing of aged LNOx outflow.

Major source of elevated O₃ in the aged anvil outflow: <u>photochemical</u> <u>production</u> (due to <u>elevated LNOx</u>) or <u>downward transport</u> from the stratosphere? Main DC3 objective: quantify O₃ production in UT from LNOx

Falcon flight on 12 June 2012: Squall line (border CO/KS)

Owen Cooper et al. (NOAA)

Falcon flight on 12 June 2012: Squall line (border CO/KS)

F#12 120612a

CO mixing ratio /nmol mol⁻¹

Photo: http://www.top-wetter.de/spezial/ueber_den_wolken/ueber_den_wolken_24.shtml

DC3 Flight Number, Date, Flight a or b, anvil time	Pressure Altitude, km	CO Mixing Ratio, nmol mol ⁻¹	O ₃ Mixing Ratio, nmol mol ⁻¹	NO Mixing Ratio, nmol mol ⁻¹	Ethane, pmol mol ⁻¹	Propane, pmol mol ⁻¹
F#12 120612a 84536-85260 s upward (inside)	10.3	120±3 (113/126)	73±4 (65/85)	0.6±0.2 (0.2/1.1)	-	-
Netto Impact 84210-85400 s	10.4	↑ 121±3	↓ 82±14	↑ 0.7±0.5	-	-
Background 87939-87965 s	10.3	106±1	120±1	-	-	-
F#12 120612a 85996-86999 s upward (inside)	11.6	123±2 (117/129)	72±4 (60/80)	1.5±0.4 (0.8/3.1)	↑ 821/1073 (BB)	↑656/615 (BB)
Netto Impact 85910-87650 s	11.6		-30%!		↑ 821/1073 (BB)	↑656/615 (BB)
Background 87659-87832 s	11.3	+20%	mature	x8	-	-
BB plume (BL ~2km)			outflow		976	454
			penetrates into LS			

elapsed UTC time since midnight /s

F#4 300512b

F#4 300512b

CO mixing ratio /nmol mol⁻¹

F#4 300512b

Photo: http://www.top-wetter.de/spezial/ueber_den_wolken/ueber_den_wolken_24.shtml

DC3 Flight Number, Date, Flight a or b, anvil time	Pressure Altitude, km	CO Mixing Ratio, nmol mol ⁻¹	O ₃ Mixing Ratio, nmol mol ⁻¹	NO Mixing Ratio, nmol mol ⁻¹	Ethane, pmol mol ⁻¹	Propane, pmol mol ⁻¹
<u>F#4 300512b</u> 86852-87133 s upward (outside)	10.3	103±3 (97/110)	82±5 (69/92)	0.2±0.1 (0.1/0.5)	-	-
87134-87323 s downward (inside)	9.2				-	-
87324-87440 s upward (inside)	9.1	↑117±16	↑102±20	↑1.8±1.3	-	-
87441-87577 s downward (inside)	9.1	+20%	+20%! dissipating supercell	X36	-	-
87578-87838 s upward (outside)	9.1	98±6 (89/120)	\rightarrow strat. O_3	0.05±0.01 (0.03/0.08)	-	-
Netto Impact 86852-87838 s	9.5	↑ 108±14	mixes into troposphere	↑ 1.0±1.3	-	-
Background 83988-84040 s	9.5	97±2	86±4	0.05±0.03	-	-

Falcon flight on 8 June 2012: Flight over Kansas in aged outflow (12-24 h) from squall line over Colorado

BB plumes from New Mexico advected to Kansas

F#8 080612a

CO mixing ratio /nmol mol⁻¹

Photo: http://www.top-wetter.de/spezial/ueber_den_wolken/ueber_den_wolken_24.shtml

DC3 Flight Number, Date, Flight a or b, anvil time	Pressure Altitude, km	CO Mixing Ratio, nmol mol ⁻¹	O₃ Mixing Ratio, nmol mol ⁻¹	NO Mixing Ratio, nmol mol ⁻¹	Ethane, pmol mol ⁻¹	Propane, pmol mol ⁻¹
F#8 080612a (62540-64635 s) aged outflow	11.6	up to	+60% or	up to	↑1930 (BB)	↑1357 (BB)
Background (64636-65638 s) (61260-62539 s)	11.6 rear 11.6 front	+40%	-20%	х7	478 -	124 -
F#8 080612a (65921-67251 s) aged outflow	9.9	no change	+20%! aged outflow→ strat. intr. mixes into	x2	↑ 1737 (BB)	↑ 1243 (BB)
Background (59286-59366 s)	9.8-10.0		lower part of anvil outflow		-	-

Summary of the DC3 Falcon measurements

Fresh and *aged* LNOx successfully measured:

- on 30 May, 8 June, 11 June, and 12 June 2012
- in MCS, squall lines and isolated supercells
- <u>repeated penetrations</u> and <u>long flight duration times</u> in selected anvil outflows covering lower outflow boundaries up to 12 km

- <u>highest NOx mixing ratios (mean 2-3 ppbv) in supercell and MCS outflow</u> (comparable to Hector in Australia)

- LNOx mixed into the lower stratosphere (LS) and LNOx mixed with BB plumes

O₃ in fresh and *aged* LNOx plumes:

- in general O₃ decrease compared to background observed (upward transport)
- frequently stratospheric intrusions at the anvil outflow edges enhance O₃
- frequently direct downward transport from UT/LS into the anvil enhances O_3
- downward transport of O₃-rich air dominates in aged LNOx outflow^{NEW}
- photochemical O₃ production is not a prominent feature

 → Strong UT/LS exchange caused by DC3 thunderstorms (2x tropopause & strat. intr.): Role of thunderstorm intensification by ingested BB plumes?
 NEWOutside thunderstorms ("=obstacles"): lofted BB plumes mix with strat. intrusion